Search Results

Now showing 1 - 8 of 8
  • Item
    Porous PEDOT:PSS Particles and their Application as Tunable Cell Culture Substrate
    (Weinheim : Wiley, 2021) Rauer, Sebastian Bernhard; Bell, Daniel Josef; Jain, Puja; Rahimi, Khosrow; Felder, Daniel; Linkhorst, John; Wessling, Matthias
    Due to its biocompatibility, electrical conductivity, and tissue-like elasticity, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) constitutes a highly promising material regarding the fabrication of smart cell culture substrates. However, until now, high-throughput synthesis of pure PEDOT:PSS geometries was restricted to flat sheets and fibers. In this publication, the first microfluidic process for the synthesis of spherical, highly porous, pure PEDOT:PSS particles of adjustable material properties is presented. The particles are synthesized by the generation of PEDOT:PSS emulsion droplets within a 1-octanol continuous phase and their subsequent coagulation and partial crystallization in an isopropanol (IPA)/sulfuric acid (SA) bath. The process allows to tailor central particle characteristics such as crystallinity, particle diameter, pore size as well as electrochemical and mechanical properties by simply adjusting the IPA:SA ratio during droplet coagulation. To demonstrate the applicability of PEDOT:PSS particles as potential cell culture substrate, cultivations of L929 mouse fibroblast cells and MRC-5 human fibroblast cells are conducted. Both cell lines present exponential growth on PEDOT:PSS particles and reach confluency with cell viabilities above 95 vol.% on culture day 9. Single cell analysis could moreover reveal that mechanotransduction and cell infiltration can be controlled by the adjustment of particle crystallinity.
  • Item
    Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering
    (Weinheim : Wiley-VCH, 2020) Cui, Qing; Bell, Daniel Josef; Rauer, Sebastian Bernhard; Wessling, Matthias
    Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 μm diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Mitigating Water Crossover by Crosslinked Coating of Cation‐Exchange Membranes for Brine Concentration
    (Weinheim : Wiley, 2021) Rommerskirchen, Alexandra; Roth, Hannah; Linnartz, Christian J.; Egidi, Franziska; Kneppeck, Christian; Roghmans, Florian; Wessling, Matthias
    Undesired water crossover through ion-exchange membranes is a significant limitation in electrically driven desalination processes. The effect of mitigating water crossover is twofold: 1) The desalination degree is less reduced due to the unwanted removal of water, and 2) the brine concentration is increased due to decreased dilution by an unwanted crossover of water molecules. Hence, water crossover limits the desalination and concentration efficiency of the processes, while the energy demand to achieve a certain level of desalination or concentration increases. This effect is especially pronounced when treating high salinity solutions, which goes hand in hand with the crossover of many ions through the ion-exchange membranes. A crosslinked coating for cation-exchange membranes (CEMs) is presented in this work, which can significantly mitigate such undesired water crossover. The efficacy is demonstrated using the flow-electrode capacitive deionization process applied for desalination and concentration of saline brines at feed concentrations of 60 and 120 g L−1 NaCl. With just a single coated CEM, the water crossover was reduced by up to 54%.
  • Item
    3D‐Printed Bioreactor with Integrated Impedance Spectroscopy for Cell Barrier Monitoring
    (Weinheim : Wiley, 2021) Linz, Georg; Rauer, Sebastian Bernhard; Kuhn, Yasmin; Wennemaring, Simon; Siedler, Laura; Singh, Smriti; Wessling, Matthias
    Cell culture experiments often suffer from limited commercial availability of laboratory-scale bioreactors, which allow experiments to be conducted under flow conditions and additional online monitoring techniques. A novel 3D-printed bioreactor with a homogeneously distributed flow field enabling epithelial cell culture experiments and online barrier monitoring by integrated electrodes through electrical impedance spectroscopy (EIS) is presented. Transparent and conductive indium tin oxide glass as current-injecting electrodes allows direct visualization of the cells, while measuring EIS simultaneously. The bioreactor's design considers the importance of a homogeneous electric field by placing the voltage pick-up electrodes in the electrical field. The device's functionality is demonstrated by the cultivation of the epithelial cell line Caco-2 under continuous flow and monitoring of the cell layer by online EIS. The collected EIS data were fitted by an equivalent electric circuit, resulting in the cell layer's resistance and capacitance. This data is used to monitor the cell layer's reaction to ethylene glycol-bis-(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid and forskolin. These two model substances show the power of impedance spectroscopy as a non-invasive way to characterize cell barriers. In addition, the bioreactor design is available as a print-ready file in the Appendix, enabling its use for other scientific institutions.
  • Item
    Porous PVDF Monoliths with Templated Geometry
    (Weinheim : Wiley, 2021) Djeljadini, Suzana; Bongartz, Patrick; Alders, Michael; Hartmann, Nils; Oing, Alexander; Cornelissen, Christian; Hesselmann, Felix; Arens, Jutta; Steinseifer, Ulrich; Linkhorst, John; Wessling, Matthias
    Additive manufacturing of complex porous polymer geometries is a new field of advanced materials processing. Such new geometries can be used to fabricate porous polymer monoliths serving as a support for other material functions. Here, a novel fabrication technology to manufacture tailored 3D porous monoliths via additive manufacturing and templating is presented. The method is based on replicating a 3D-printed mold with a polymer solution of polyvinylidenfluorid-triethyl phosphate (PVDF-TEP) and induce phase separation of the polymer solution subsequently. In a second step, the mold is removed without affecting the porous PVDF phase. As a result, porous monoliths with a templated 3D architecture are successfully fabricated. The manufacturing process is successfully applied to complex structures and can be applied to any conceivable geometry. Coating the porous 3D monoliths with another PVDF solution allows applying a skin layer yielding an asymmetric membrane monolith. As a showcase, a polydimethylsiloxane coating even leads to a smooth and dense layer of micrometer size. The methodology enables a new generation of complex porous polymer monoliths with tailored surface coatings. For the combination of poly(dimethylsiloxane) on a porous support, gas/liquid mass transfer is used in blood oxygenation with reduced diffusion limitation is within reach.
  • Item
    Unravelling colloid filter cake motions in membrane cleaning procedures
    (London : Nature Publishing Group, 2020) Lüken, Arne; Linkhorst, John; Fröhlingsdorf, Robin; Lippert, Laura; Rommel, Dirk; De Laporte, Laura; Wessling, Matthias
    The filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes.Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake’s unique behaviour exposed to shear-stress. © 2020, The Author(s).
  • Item
    Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Linkhorst, John; Lölsberg, Jonas; Thill, Sebastian; Lohaus, Johannes; Lüken, Arne; Naegele, Gerhard; Wessling, Matthias
    Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake’s behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane’s morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.
  • Item
    Particle movements provoke avalanche-like compaction in soft colloid filter cakes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Lüken, Arne; Stüwe, Lucas; Lohaus, Johannes; Linkhorst, John; Wessling, Matthias
    During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.