Search Results

Now showing 1 - 3 of 3
  • Item
    Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
    (München : European Geopyhsical Union, 2014) Henning, S.; Dieckmann, K.; Ignatius, K.; Schäfer, M.; Zedler, P.; Harris, E.; Sinha, B.; van Pinxteren, D.; Mertes, S.; Birmili, W.; Merkel, M.; Wu, Z.; Wiedensohler, A.; Wex, H.; Herrmann, H.; Stratmann, F.
    Within the framework of the "Hill Cap Cloud Thuringia 2010" (HCCT-2010) international cloud experiment, the influence of cloud processing on the activation properties of ambient aerosol particles was investigated. Particles were probed upwind and downwind of an orographic cap cloud on Mt Schmücke, which is part of a large mountain ridge in Thuringia, Germany. The activation properties of the particles were investigated by means of size-segregated cloud condensation nuclei (CCN) measurements at 3 to 4 different supersaturations. The observed CCN spectra together with the total particle spectra were used to calculate the hygroscopicity parameter κ for the upwind and downwind stations. The upwind and downwind critical diameters and κ values were then compared for defined cloud events (FCE) and non-cloud events (NCE). Cloud processing was found to increase the hygroscopicity of the aerosol particles significantly, with an average increase in κ of 50%. Mass spectrometry analysis and isotopic analysis of the particles suggest that the observed increase in the hygroscopicity of the cloud-processed particles is due to an enrichment of sulfate and possibly also nitrate in the particle phase.
  • Item
    Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles
    (Göttingen : Copernicus GmbH, 2019) Gong, X.; Wex, H.; Müller, T.; Wiedensohler, A.; Höhler, K.; Kandler, K.; Ma, N.; Dietel, B.; Schiebel, T.; Möhler, O.; Stratmann, F.
    As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, to characterize the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in particular. New particle formation (NPF) events with subsequent growth of the particles into the CCN size range were observed. Aitken mode particles featured k values of 0.21 to 0.29, indicating the presence of organic materials. Accumulation mode particles featured a higher hygroscopicity parameter, with a median k value of 0.57, suggesting the presence of sulfate and maybe sea salt particles mixed with organic carbon. A clear downward trend of k with increasing supersaturation and decreasing dcrit was found. Super-micron particles originated mainly from sea-spray aerosol (SSA) and partly from mineral dust. INP concentrations (NINP) were measured in the temperature range from-6:5 to-26:5 °C, using two freezing array-type instruments. NINP at a particular temperature span around 1 order of magnitude below-20 °C and about 2 orders of magnitude at warmer temperatures (T >-18 °C). Few samples showed elevated concentrations at temperatures >-15 °C, which suggests a significant contribution of biological particles to the INP population, which possibly could originate from Cyprus. Both measured temperature spectra and NINP probability density functions (PDFs) indicate that the observed INP (ice active in the temperature range between-15 and-20 °C) mainly originate from long-range transport. There was no correlation between NINP and particle number concentration in the size range> 500 nm (N>500 nm). Parameterizations based on N>500 nm were found to overestimate NINP by about 1 to 2 orders of magnitude. There was also no correlation between NINP and particle surface area concentration. The ice active surface site density (ns) for the polluted aerosol encountered in the eastern Mediterranean in this study is about 1 to 3 orders of magnitude lower than the ns found for dust aerosol particles in previous studies. This suggests that observed NINP PDFs such as those derived here could be a better choice for modeling NINP if the aerosol particle composition is unknown or uncertain.
  • Item
    Size-segregated chemical, gravimetric and number distribution-derived mass closure of the aerosol in Sagres, Portugal during ACE-2
    (Milton Park : Taylor & Francis, 2016) Neusüß, C.; Weise, D.; Birmili, W.; Wex, H.; Wiedensohler, A.; Covert, D.S.
    During the ACE-2 field campaign in the summer of 1997 an intensive, ground-based physical and chemical characterisation of the clean marine and continentally polluted aerosol was performed at Sagres, Portugal. Number size distributions of the dry aerosol in the size range 3–10 000 nm were continuously measured using DMPS and APS systems. Impactor samples were regularly taken at 60% relative humidity (RH) to obtain mass size distributions by weighing the impactor foils, and to derive a chemical mass balance by ion and carbon analysis. Hygroscopic growth factors of the metastable aerosol at 60% RH were determined to estimate the number size distribution at a relative humidity of 60%. A size segregated 3-way mass closure study was performed in this investigation for the first time. Mass size distributions at 60% RH derived from number size distribution measurements and impactors samples (weighing and chemical analysis) are compared. A good agreement was found for the comparison of total gravimetrically-determined mass with both number distribution-derived (slope=1.23/1.09; R2>0.97; depending on the parameters humidity growth and density) and chemical mass concentration (slope=1.02; R2=0.79) for particles smaller than 3 mm in diameter. Except for the smallest impactor size range relatively good correlations (slope=0.86–1.42) with small deviations (R2=0.76–0.98) for the different size fractions were found. Since uncertainties in each of the 3 methods are about 20% the observed differences in the size-segregated mass fractions can be explained by the measurement uncertainties. However, the number distributionderived mass is mostly higher than the chemically and gravimetrically determined mass, which can be explained by sampling losses of the impactor, but as well with measurement uncertainties as, e.g., the sizing of the DMPS/APS.