Search Results

Now showing 1 - 10 of 23
  • Item
    Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014
    (Katlenburg-Lindau : EGU, 2018) Herenz, Paul; Wex, Heike; Henning, Silvia; Kristensen, Thomas Bjerring; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank
    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90ĝ€†nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (N CN). Generally, N CN ranged from 20 to 500 cmg'3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cmg'3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter of the CCN was determined to be 0.23 on average and variations in were largely attributed to measurement uncertainties.

    Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.
  • Item
    Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
    (Katlenburg-Lindau : European Geosciences Union, 2021) Hartmann, Markus; Gong, Xianda; Kecorius, Simonas; van Pinxteren, Manuela; Vogl, Teresa; Welti, André; Wex, Heike; Zeppenfeld, Sebastian; Herrmann, Hartmut; Wiedensohler, Alfred; Stratmann, Frank
    Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. -38gC and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above -10gC and below -32gC, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes. By heating of the filter samples to 95gC for 1ĝ€¯h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2ĝ€¯μm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2ĝ€¯μm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with -3.47gC, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above -10gC. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source. © Author(s) 2021.
  • Item
    Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China
    (Katlenburg-Lindau : EGU, 2018) Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike
    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.
  • Item
    A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
    (Katlenburg-Lindau : EGU, 2019) Hiranuma, Naruki; Adachi, Kouji; Bell, David M.; Belosi, Franco; Beydoun, Hassan; Bhaduri, Bhaskar; Bingemer, Heinz; Budke, Carsten; Clemen, Hans-Christian; Conen, Franz; Cory, Kimberly M.; Curtius, Joachim; DeMott, Paul J.; Eppers, Oliver; Grawe, Sarah; Hartmann, Susan; Hoffmann, Nadine; Höhler, Kristina; Jantsch, Evelyn; Kiselev, Alexei; Koop, Thomas; Kulkarni, Gourihar; Mayer, Amelie; Murakami, Masataka; Murray, Benjamin J.; Nicosia, Alessia; Petters, Markus D.; Piazza, Matteo; Polen, Michael; Reicher, Naama; Rudich, Yinon; Saito, Atsushi; Santachiara, Gianni; Schiebel, Thea; Schill, Gregg P.; Schneider, Johannes; Segev, Lior; Stopelli, Emiliano; Sullivan, Ryan C.; Suski, Kaitlyn; Szakáll, Miklós; Tajiri, Takuya; Taylor, Hans; Tobo, Yutaka; Ullrich, Romy; Weber, Daniel; Wex, Heike; Whale, Thomas F.; Whiteside, Craig L.; Yamashita, Katsuya; Zelenyuk, Alla; Möhler, Ottmar
    We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 ∘C) data over a wide T range (−36 ∘C 
  • Item
    The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation
    (München : European Geopyhsical Union, 2016) Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; Welti, Andre; Voigtländer, Jens; Kulkarni, Gourihar R.; Sagan, Frank; Kok, Gregory Lee; Dorsey, James; Nichman, Leonid; Rothenberg, Daniel Alexander; Rösch, Michael; Kirchgäßner, Amélie Catharina Ruth; Ladkin, Russell; Wex, Heike; Wilson, Theodore W.; Ladino, Luis Antonio; Abbatt, Jon P.D.; Stetzer, Olaf; Lohmann, Ulrike; Stratmann, Frank; Cziczo, Daniel James
    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigate homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Overall, we report that the SPIN is able to reproduce previous INP counter measurements.
  • Item
    Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations
    (Katlenburg-Lindau : Copernicus, 2020) Clemen, Hans-Christian; Schneider, Johannes; Klimach, Thomas; Helleis, Frank; Köllner, Franziska; Hünig, Andreas; Rubach, Florian; Mertes, Stephan; Wex, Heike; Stratmann, Frank; Welti, André; Kohl, Rebecca; Frank, Fabian; Borrmann, Stephan
    The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive sizeresolved measurements with spherical polystyrene latex particles (PSL; 150-6000 nm) and cubic sodium chloride particles (NaCl; 400-1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu-type ALS, especially for supermicron particles. At a lens pressure of 2.4 hPa, the new ALS achieves a PSL particle size range from 230 to 3240 nm with 50% detection efficiency and between 350 and 2000 nm with 95% detection efficiency. The particle beam divergence was determined by measuring the detection efficiency at variable ALS positions along the laser cross sections and found to be minimal for PSL at about 800 nm. Compared to measurements by singleparticle mass spectrometry (SPMS) instruments using Liutype ALSs, the minimum particle beam divergence is shifted towards larger particle sizes. However, there are no disadvantages compared to the Liu-type lenses for particle sizes down to 200 nm. Improvements achieved by using the DIE and an additional electric shielding could be evaluated by size-resolved measurements of the hit rate, which is the ratio of laser pulses yielding a detectable amount of ions to the total number of emitted laser pulses. In particular, the hit rate for multiply charged particles smaller than 500 nm is significantly improved by preventing an undesired deflection of these particles in the ion extraction field. Moreover, it was found that by using the DIE the ion yield of the ablation, ionization, and ion extraction process could be increased, resulting in up to 7 times higher signal intensities of the cation spectra. The enhanced ion yield results in a larger effective width of the ablation laser beam, which in turn leads to a hit rate of almost 100% for PSL particles in the size range from 350 to 2000 nm. Regarding cubic NaCl particles the modifications of the ALABAMA result in an up to 2 times increased detection efficiency and an up to 5 times increased hit rate. The need for such instrument modifications arises in particular for measurements of particles that are present in low number concentrations such as ice-nucleating particles (INPs) in general, but also aerosol particles at high altitudes or in pristine environments. Especially for these low particle number concentrations, improved efficiencies help to overcome the statistical limitations of single-particle mass spectrometer measurements. As an example, laboratory INP measurements carried out in this study show that the appli- cation of the DIE alone increases the number of INP mass spectra per time unit by a factor of 2 to 3 for the sampled substances. Overall, the combination of instrument modifications presented here resulted in an increased measurement efficiency of the ALABAMA for different particle types and particles shape as well as for highly charged particles. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective transfer and high enrichments
    (Katlenburg-Lindau : EGU, 2021) Triesch, Nadja; van Pinxteren, Manuela; Frka, Sanja; Stolle, Christian; Spranger, Tobias; Hoffmann, Erik Hans; Gong, Xianda; Wex, Heike; Schulz-Bull, Detlef; Gasparovic, Blazenka; Herrmann, Hartmut
    In the marine environment, measurements of lipids as representative species within different lipid classes have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. The set of lipid classes includes hydrocarbons (HC); fatty acid methyl esters (ME); free fatty acids (FFA); alcohols (ALC); 1,3-diacylglycerols (1,3 DG); 1,2-diacylglycerols (1,2 DG); monoacylglycerols (MG); wax esters (WE); triacylglycerols (TG); and phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), as well as glycolipids (GL) which cover sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST). These introduced lipid classes have been analyzed in the dissolved and particulate fraction of seawater, differentiating between underlying water (ULW) and the sea surface microlayer (SML) on the one hand. On the other hand, they have been examined on ambient submicrometer aerosol particle samples (PM1) which were collected at the Cape Verde Atmospheric Observatory (CVAO) by applying concerted measurements. These different lipids are found in all marine compartments but in different compositions. Along the campaign, certain variabilities are observed for the concentration of dissolved (∑DLULW: 39.8–128.5 µg L−1, ∑DLSML: 55.7–121.5 µg L−1) and particulate (∑PLULW: 36.4–93.5 µg L−1, ∑PLSML: 61.0–118.1 µg L−1) lipids in the seawater of the tropical North Atlantic Ocean. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured. As also bacteria – besides phytoplankton sources – influence the lipid concentrations in seawater and on the aerosol particles, the lipid abundance cannot be exclusively explained by the phytoplankton tracer (chlorophyll a). The concentration and enrichment of lipids in the SML are not related to physicochemical properties which describe the surface activity. On the aerosol particles, an EFaer (the enrichment factor on the submicrometer aerosol particles compared to the SML) between 9×104–7×105 is observed. Regarding the individual lipid groups on the aerosol particles, a statistically significant correlation (R2=0.45, p=0.028) was found between EFaer and lipophilicity (expressed by the KOW value), which was not present for the SML. But simple physicochemical descriptors are overall not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean–atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extent of the enrichment of the lipid class constituents on the aerosol particles might be related to the distribution of the lipid within the bubble–air–water interface. The lipids TG and ALC which are preferably arranged within the bubble interface are transferred to the aerosol particles to the highest extent. Finally, the connection between ice nucleation particles (INPs) in seawater, which are already active at higher temperatures (−10 to −15 ∘C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred into the atmosphere.
  • Item
    New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea
    (Katlenburg-Lindau : EGU, 2019) Kecorius, Simonas; Vogl, Teresa; Paasonen, Pauli; Lampilahti, Janne; Rothenberg, Daniel; Wex, Heike; Zeppenfeld, Sebastian; van Pinxteren, Manuela; Hartmann, Markus; Henning, Silvia; Gong, Xianda; Welti, Andre; Kulmala, Markku; Stratmann, Frank; Herrmann, Hartmut; Wiedensohler, Alfred
    In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol-cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10-50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm-3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s-1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15-50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater
    (Katlenburg-Lindau : EGU, 2020) Gong, Xianda; Wex, Heike; van Pinxteren, Manuela; Triesch, Nadja; Fomba, Khanneh Wadinga; Lubitz, Jasmin; Stolle, Christian; Robinson, Tiera-Brandy; Müller, Thomas; Herrmann, Hartmut; Stratmann, Frank
    Ice-nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized, and, although there is some understanding of their sources, it is still unclear to what extend different sources contribute or if all sources are known. In this work, we examined properties of INPs at Cabo Verde (a.k.a. Cape Verde) from different environmental compartments: the oceanic sea surface microlayer (SML), underlying water (ULW), cloud water and the atmosphere close to both sea level and cloud level. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with ice-nucleation temperature. NINP values in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular ice-nucleation temperature spanned around 1 order of magnitude below −15 ∘C, and about 2 orders of magnitude at warmer temperatures (>−12  ∘C). Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 L−1 at −10 ∘C. After heating samples at 95 ∘C for 1 h, the elevated NINP at the warm temperatures disappeared, indicating that these highly ice active INPs were most likely biological particles. INP number concentrations in PM1 were generally lower than those in PM10 at CVAO. About 83±22 %, 67±18 % and 77±14 % (median±standard deviation) of INPs had a diameter >1 µm at ice-nucleation temperatures of −12, −15 and −18 ∘C, respectively. PM1 at CVAO did not show such elevated NINP at warm temperatures. Consequently, the difference in NINP between PM1 and PM10 at CVAO suggests that biological ice-active particles were present in the supermicron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during noncloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV but in cloud water samples instead. This is direct evidence that these INPs, which are likely biological, are activated to cloud droplets during cloud events. For the observed air masses, atmospheric NINP values in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. This latter conclusion still holds when accounting for an enrichment of organic carbon in supermicron particles during sea spray generation as reported in literature.
  • Item
    Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
    (Katlenburg-Lindau : EGU, 2017) Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina
    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38°C (273 to 235K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139000 1Hz data points (38.6h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10°C (268 to 263K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.