Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

2018, Veselovskii, Igor, Goloub, Philippe, Podvin, Thierry, Tanre, Didier, Ansmann, Albert, Korenskiy, Michail, Borovoi, Anatoli, Hu, Qiaoyun, Bovchaliuk, Valentin, Whiteman, David N., Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

Loading...
Thumbnail Image
Item

1064nm rotational Raman lidar for particle extinction and lidar-ratio profiling: Cirrus case study

2016, Haarig, Moritz, Engelmann, Ronny, Ansmann, Albert, Veselovskii, Igor, Whiteman, David N., Althausen, Dietrich

For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen and oxygen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532, and 1064 nm. The cirrus backscatter coefficients were found to be equal for all three wavelengths keeping the retrieval uncertainties in mind. The multiple-scattering-corrected cirrus extinction coefficients at 355 nm were on average about 20–30 % lower than the ones for 532 and 1064 nm. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 31 ± 5 sr (355 nm), 36 ± 5 sr (532 nm), and 38 ± 5 sr (1064 nm) in this single study. We further discussed the requirements needed to obtain aerosol extinction profiles in the lower troposphere at 1064 nm with good accuracy (20 % relative uncertainty) and appropriate temporal and vertical resolution.