Search Results

Now showing 1 - 3 of 3
  • Item
    Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures
    (Basel : MDPI, 2019) Huang, Ying; Gohs, Uwe; Müller, Michael Thomas; Zschech, Carsten; Wießner, Sven
    In this work, natural rubber (NR) was masticated using an internal mixer to fit the requirements of reactive blending with polylactide and characterized by size exclusion chromatography (SEC), Fourier-transform infrared (FT-IR) spectroscopy and dynamic rheology measurements. Subsequently, the effect of elevated temperatures (25 °C, 80 °C, and 170 °C) on the electron beam (EB) induced crosslinking and degradation of masticated natural rubber (mNR) in a nitrogen atmosphere without adding crosslinking agents has been investigated. The sol gel investigation showed that the gel dose of mNR slightly increased with increasing irradiation temperature, which is also confirmed by the swelling test. The chain scission to crosslinking ratio (Gs/Gx) was found to be less than 1 for irradiated mNR at 25 °C and 80 °C, suggesting a dominating crosslinking behavior of mNR. However, a significant increase of Gs/Gx ratio (~1.12) was observed for mNR irradiated at 170 °C due to the enhanced thermal degradation behavior at high temperature. A remarkably improved elasticity (higher complex viscosity, higher storage modulus, and longer relaxation time) for EB modified mNR was demonstrated by dynamic rheological analysis. Particularly, the samples modified at higher temperatures represented more pronounced elasticity behavior which resulted from the higher number of branches and/or the longer branched chains.
  • Item
    Effect of prestrain on the actuation characteristics of dielectric elastomers
    (Basel : MDPI, 2020) Kumar, Mayank; Sharma, Anutsek; Hait, Sakrit; Wießner, Sven; Heinrich, Gert; Arief, Injamamul; Naskar, Kinsuk; Stöckelhuber, Klaus Werner; Das, Amit
    Dielectric elastomers (DEs) represent a class of electroactive polymers that deform due to electrostatic attraction between oppositely charged electrodes under a varying electric field. Over the last couple of decades, DEs have garnered considerable attention due to their much-coveted actuation properties. As far as the precise measurement systems are concerned, however, there is no standard instrument or interface to quantify various related parameters, e.g., actuation stress, strain, voltage and creeping etc. In this communication, we present an in-depth study of dielectric actuation behavior of dielectric rubbers by the state-of-the-art “Dresden Smart Rubber Analyzer” (DSRA), designed and developed in-house. The instrument allowed us to elucidate various factors that could influence the output efficiency of the DEs. Herein, several non-conventional DEs such as hydrogenated nitrile rubber, nitrile rubber with different acrylonitrile contents, were employed as an electro-active matrix. The effect of viscoelastic creeping on the prestrain, molecular architecture of the matrices, e.g., nitrile content of nitrile-butadiene rubber (NBR) etc., are also discussed in detail.
  • Item
    On the Influence of Viscoelastic Modeling in Fluid Flow Simulations of Gum Acrylonitrile Butadiene Rubber
    (Basel : MDPI, 2021) Stieger, Sebastian; Mitsoulis, Evan; Walluch, Matthias; Ebner, Catharina; Kerschbaumer, Roman Christopher; Haselmann, Matthias; Mostafaiyan, Mehdi; Kämpfe, Markus; Kühnert, Ines; Wießner, Sven; Friesenbichler, Walter
    Computational fluid dynamics (CFD) simulation is an important tool as it enables engineers to study different design options without a time-consuming experimental workload. However, the prediction accuracy of any CFD simulation depends upon the set boundary conditions and upon the applied rheological constitutive equation. In the present study the viscoelastic nature of an unfilled gum acrylonitrile butadiene rubber (NBR) is considered by applying the integral and time-dependent Kaye–Bernstein–Kearsley–Zapas (K-BKZ) rheological model. First, exhaustive testing is carried out in the linear viscoelastic (LVE) and non-LVE deformation range including small amplitude oscillatory shear (SAOS) as well as high pressure capillary rheometer (HPCR) tests. Next, three abrupt capillary dies and one tapered orifice die are modeled in Ansys POLYFLOW. The pressure prediction accuracy of the K-BKZ/Wagner model was found to be excellent and insensitive to the applied normal force in SAOS testing as well as to the relation of first and second normal stress differences, provided that damping parameters are fitted to steady-state rheological data. Moreover, the crucial importance of viscoelastic modeling is proven for rubber materials, as two generalized Newtonian fluid (GNF) flow models severely underestimate measured pressure data, especially in contraction flow-dominated geometries.