Search Results

Now showing 1 - 10 of 11
  • Item
    ACTRIS ACSM intercomparison - Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments
    (München : European Geopyhsical Union, 2015) Crenn, V.; Sciare, J.; Croteau, P.L.; Verlhac, S.; Fröhlich, R.; Belis, C.A.; Aas, W.; Äijälä, M.; Alastuey, A.; Artiñano, B.; Baisnée, D.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M.J.; Esser-Gietl, J.K.; Green, D.C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Lunder, C.; Minguillón, M.C.; Močnik, G.; O'Dowd, C.D.; Ovadnevaite, J.; Petit, J.-E.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J.G.; Setyan, A.; Wiedensohler, A.; Baltensperger, U.; Prévôt, A.S.H.; Jayne, J.T.; Favez, O.
    As part of the European ACTRIS project, the first large Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) intercomparison study was conducted in the region of Paris for 3 weeks during the late-fall – early-winter period (November–December 2013). The first week was dedicated to the tuning and calibration of each instrument, whereas the second and third were dedicated to side-by-side comparison in ambient conditions with co-located instruments providing independent information on submicron aerosol optical, physical, and chemical properties. Near real-time measurements of the major chemical species (organic matter, sulfate, nitrate, ammonium, and chloride) in the non-refractory submicron aerosols (NR-PM1) were obtained here from 13 Q-ACSM. The results show that these instruments can produce highly comparable and robust measurements of the NR-PM1 total mass and its major components. Taking the median of the 13 Q-ACSM as a reference for this study, strong correlations (r2 > 0.9) were observed systematically for each individual Q-ACSM across all chemical families except for chloride for which three Q-ACSMs showing weak correlations partly due to the very low concentrations during the study. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were determined using appropriate methodologies defined by the International Standard Organization (ISO 17025, 1999) and were found to be 9, 15, 19, 28, and 36 % for NR-PM1, nitrate, organic matter, sulfate, and ammonium, respectively. However, discrepancies were observed in the relative concentrations of the constituent mass fragments for each chemical component. In particular, significant differences were observed for the organic fragment at mass-to-charge ratio 44, which is a key parameter describing the oxidation state of organic aerosol. Following this first major intercomparison exercise of a large number of Q-ACSMs, detailed intercomparison results are presented, along with a discussion of some recommendations about best calibration practices, standardized data processing, and data treatment.
  • Item
    The "dual-spot" Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation
    (München : European Geopyhsical Union, 2015) Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; Hansen, A.D.A.
    Aerosol black carbon is a unique primary tracer for combustion emissions. It affects the optical properties of the atmosphere and is recognized as the second most important anthropogenic forcing agent for climate change. It is the primary tracer for adverse health effects caused by air pollution. For the accurate determination of mass equivalent black carbon concentrations in the air and for source apportionment of the concentrations, optical measurements by filter-based absorption photometers must take into account the "filter loading effect". We present a new real-time loading effect compensation algorithm based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer model AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier Aethalometer models and other filter-based absorption photometers. The real-time loading effect compensation algorithm provides the high-quality data necessary for real-time source apportionment and for determination of the temporal variation of the compensation parameter k.
  • Item
    Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles
    (München : European Geopyhsical Union, 2015) Wang, Z.; Su, H.; Wang, X.; Ma, N.; Wiedensohler, A.; Pöschl, U.; Cheng, Y.
    Knowledge about the chemical composition of aerosol particles is essential to understand their formation and evolution in the atmosphere. Due to analytical limitations, however, relatively little information is available for sub-10 nm particles. We present the design of a nano-cloud condensation nuclei counter (nano-CCNC) for measuring size-resolved hygroscopicity and inferring chemical composition of sub-10 nm aerosol particles. We extend the use of counting efficiency spectra from a water-based condensation particle counter (CPC) and link it to the analysis of CCN activation spectra, which provides a theoretical basis for the application of a scanning supersaturation CPC (SS-CPC) as a nano-CCNC. Measurement procedures and data analysis methods are demonstrated through laboratory experiments with monodisperse particles of diameter down to 2.5 nm, where sodium chloride, ammonium sulfate, sucrose and tungsten oxide can be easily discriminated by different characteristic supersaturations of water droplet formation. A near-linear relationship between hygroscopicity parameter κ and organic mass fraction is also found for sucrose-ammonium sulfate mixtures. The design is not limited to the water CPC, but also applies to CPCs with other working fluids (e.g. butanol, perfluorotributylamine). We suggest that a combination of SS-CPCs with multiple working fluids may provide further insight into the chemical composition of nanoparticles and the role of organic and inorganic compounds in the initial steps of atmospheric new particle formation and growth.
  • Item
    In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
    (Katlenburg-Lindau : EGU, 2015) Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q.J.; Michoud, V.; Slowik, J.G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J.L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.
    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.
  • Item
    Mixing state of atmospheric particles over the North China Plain
    (Amsterdam : Elsevier, 2015) Zhang, S.L.; Ma, N.; Kecorius, S.; Wang, P.C.; Hu, M.; Wang, Z.B.; Größ, J.; Wu, Z.J.; Wiedensohler, A.
    In this unique processing study, the mixing state of ambient submicron aerosol particles in terms of hygroscopicity and volatility was investigated with a Hygroscopicity Tandem Differential Mobility Analyzer and a Volatility Tandem Differential Mobility Analyzer. The measurements were conducted at a regional atmospheric observational site in the North China Plain (NCP) from 8 July to 9 August, 2013. Multimodal patterns were observed in the probability density functions of the hygroscopicity parameter κ and the shrink factor, indicating that ambient particles are mostly an external mixture of particles with different hygroscopicity and volatility. Linear relationships were found between the number fraction of hydrophobic and non-volatile populations, reflecting the dominance of soot in hydrophobic and non-volatile particles. The number fraction of non-volatile particles is lower than that of hydrophobic particles in most cases, indicating that a certain fraction of hydrophobic particles is volatile. Distinct diurnal patterns were found for the number fraction of the hydrophobic and non-volatile particles, with a higher level at nighttime and a lower level during the daytime. The result of air mass classification shows that aerosol particles in air masses coming from north with high moving speed have a high number fraction of hydrophobic/non-volatile population, and are more externally mixed. Only minor differences can be found between the measured aerosol properties for the rest of the air masses. With abundant precursor in the NCP, no matter where the air mass originates, as far as it stays in the NCP for a certain time, aerosol particles may get aged and mixed with newly emitted particles in a short time.
  • Item
    Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements
    (München : European Geopyhsical Union, 2015) Wu, Z.J.; Poulain, L.; Birmili, W.; Größ, J.; Niedermeier, N.; Wang, Z.B.; Herrmann, H.; Wiedensohler, A.
    New particle formation (NPF) and growth is an important source of cloud condensation nuclei (CCN). In this study, we investigated the chemical species driving new particle growth to the CCN sizes on the basis of particle hygroscopicity measurements carried out at the research station Melpitz, Germany. Three consecutive NPF events occurred during summertime were chosen as examples to perform the study. Hygroscopicity measurements showed that the (NH4)2SO4-equivalent water-soluble fraction accounts for 20 and 16 % of 50 and 75 nm particles, respectively, during the NPF events. Numerical analysis showed that the ratios of H2SO4 condensational growth to the observed particle growth were 20 and 13 % for 50 and 75 nm newly formed particles, respectively. Aerosol mass spectrometer measurements showed that an enhanced mass fraction of sulfate and ammonium in the newly formed particles was observed when new particles grew to the sizes larger than 30 nm shortly after the particle formation period. At a later time, the secondary organic species played a key role in the particle growth. Both hygroscopicity and aerosol mass spectrometer (AMS) measurements and numerical analysis confirmed that organic compounds were major contributors driving particle growth to CCN sizes. The critical diameters at different supersaturations estimated using AMS data and κ-Köhler theory increased significantly during the later course of NPF events. This indicated that the enhanced organic mass fraction caused a reduction in CCN efficiency of newly formed particles. Our results implied that the CCN production associated with atmospheric nucleation may be overestimated if assuming that newly formed particles can serve as CCN once they grow to a fixed particle size, an assumption made in some previous studies, especially for organic-rich environments. In our study, the enhancement in CCN number concentration associated with individual NPF events were 63, 66, and 69 % for 0.1, 0.4, and 0.6 % supersaturation, respectively.
  • Item
    Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements
    (München : European Geopyhsical Union, 2015) Petetin, H.; Beekmann, M.; Colomb, A.; van der Gon, H.A.C.Denier; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q.J.
    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.
  • Item
    ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers
    (München : European Geopyhsical Union, 2015) Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C.A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J.G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P.L.; Cubison, M.J.; Esser-Gietl, J.K.; Green, D.C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J.T.; Lunder, C.R.; Minguillón, M.C.; Močnik, G.; O'Dowd, C.D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A.S.H.
    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.
  • Item
    Variability of air ion concentrations in urban Paris
    (München : European Geopyhsical Union, 2015) Dos Santos, V.N.; Herrmann, E.; Manninen, H.E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P.P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.
    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8–42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8–2 nm), intermediate (2–7 nm), and large (7–20 nm). The median concentrations of small and large ions were 670 and 680 cm−3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm−3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10−3 s−1; CS weekend 09:00: 8 × 10−3 s−1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h−1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5–10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5–1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.
  • Item
    In situ formation and spatial variability of particle number concentration in a European megacity
    (München : European Geopyhsical Union, 2015) Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G.J.; Petäjä, T.; Prévôt, A.S.H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S.N.
    Ambient particle number size distributions were measured in Paris, France, during summer (1–31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10−3 s−1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm−3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.