Search Results

Now showing 1 - 3 of 3
  • Item
    Global analysis of continental boundary layer new particle formation based on long-term measurements
    (Katlenburg-Lindau : EGU, 2018) Nieminen, Tuomo; Kerminen, Veli-Matti; Petäjä, Tuukka; Aalto, Pasi P.; Arshinov, Mikhail; Asmi, Eija; Baltensperger, Urs; Beddows, David C. S.; Beukes, Johan Paul; Collins, Don; Ding, Aijun; Harrison, Roy M.; Henzing, Bas; Hooda, Rakesh; Hu, Min; Hõrrak, Urmas; Kivekäs, Niku; Komsaare, Kaupo; Krejci, Radovan; Kristensson, Adam; Laakso, Lauri; Laaksonen, Ari; Leaitch, W. Richard; Lihavainen, Heikki; Mihalopoulos, Nikolaos; Németh, Zoltán; Nie, Wei; O'Dowd, Colin; Salma, Imre; Sellegri, Karine; Svenningsson, Birgitta; Swietlicki, Erik; Tunved, Peter; Ulevicius, Vidmantas; Vakkari, Ville; Vana, Marko; Wiedensohler, Alfred; Wu, Zhijun; Virtanen, Annele; Kulmala, Markku
    Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  • Item
    Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility
    (Katlenburg-Lindau : EGU, 2020) Wang, Yu; Chen, Ying; Wu, Zhijun; Shang, Dongjie; Bian, Yuxuan; Du, Zhuofei; Schmitt, Sebastian H.; Su, Rong; Gkatzelis, Georgios I.; Schlag, Patrick; Hohaus, Thorsten; Voliotis, Aristeidis; Lu, Keding; Zeng, Limin; Zhao, Chunsheng; Alfarra, M. Rami; McFiggans, Gordon; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Zhang, Yuanhang; Hu, Min
    As has been the case in North America and western Europe, the SO2 emissions have substantially reduced in the North China Plain (NCP) in recent years. Differential rates of reduction in SO2 and NOx concentrations result in the frequent occurrence of particulate matter pollution dominated by nitrate (pNO−3) over the NCP. In this study, we observed a polluted episode with the particulate nitrate mass fraction in nonrefractory PM1 (NR-PM1) being up to 44 % during wintertime in Beijing. Based on this typical pNO−3-dominated haze event, the linkage between aerosol water uptake and pNO−3 enhancement, further impacting on visibility degradation, has been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from ∼10 % to 70 %, the aerosol particle liquid water increased from ∼1 µg m−3 at the beginning to ∼75 µg m−3 in the fully developed haze period. The aerosol liquid water further increased the aerosol surface area and volume, enhancing the condensational loss of N2O5 over particles. From the beginning to the fully developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 when considering extra surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the thermodynamic equilibrium of HNO3 in the particle phase under the supersaturated HNO3 and NH3 in the atmosphere. All the above results demonstrated that pNO−3 is enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn facilitating the aerosol take-up of water due to the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within 1 d. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in the NCP.
  • Item
    No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014
    (Columbus, Ohio : American Chemical Society, 2020) Tan, Zhaofeng; Hofzumahaus, Andreas; Lu, Keding; Brown, Steven S.; Holland, Frank; Huey, Lewis Gregory; Kiendler-Scharr, Astrid; Li, Xin; Liu, Xiaoxi; Ma, Nan; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wahner, Andreas; Wang, Yuhang; Wiedensohler, Alfred; Wu, Yusheng; Wu, Zhijun; Zeng, Limin; Zhang, Yuanhang; Fuchs, Hendrik
    The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.