Search Results

Now showing 1 - 10 of 12
  • Item
    An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC
    (München : European Geopyhsical Union, 2016) Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Müller, Thomas; Conrath, Thomas; Voigtländer, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A.M.; Zahn, Andreas
    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.
  • Item
    Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2
    (Milton Park : Taylor & Francis, 2016) Dusek, Ulrike; Covert, David S.; Wiedensohler, Alfred; Neusüss, Christian; Weise, Diana; Cantrell, Will
    In this work we propose and test a method to calculate cloud condensation nuclei (CCN) spectra basedon aerosol number size distributions and hygroscopic growth factors. Sensitivity studies show thatthis method can be used in a wide variety of conditions except when the aerosol consist mainly oforganic compounds. One crucial step in the calculations, estimating soluble ions in an aerosol particlebased on hygroscopic growth factors, is tested in an internal hygroscopic consistency study. The resultsshow that during the second Aerosol Characterization Experiment (ACE-2) the number concentrationof inorganic ions analyzed in impactor samples could be reproduced from measured growth factorswithin the measurement uncertainties at the measurement site in Sagres, Portugal. CCN spectra were calculated based on data from the ACE-2 field experiment at the Sagres site.The calculations overestimate measured CCN spectra on average by approximately 30%, which iscomparable to the uncertainties in measurements and calculations at supersaturations below 0.5%. Thecalculated CCN spectra were averaged over time periods when Sagres received clean air masses and airmasses influenced by aged and recent pollution. Pollution outbreaks enhance the CCN concentrationsat supersaturations near 0.2% by a factor of 3 (aged pollution) to 5 (recent pollution) compared to theclean marine background concentrations. In polluted air masses, the shape of the CCN spectra changes.The clean spectra can be approximated by a power function, whereas the polluted spectra are betterapproximated by an error function.
  • Item
    Evaluation of the size segregation of elemental carbon (EC) emission in Europe: Influence on the simulation of EC long-range transportation
    (München : European Geopyhsical Union, 2016) Chen, Ying; Cheng, Ya-Fang; Nordmann, Stephan; Birmili, Wolfram; van der Gon, Hugo A.C. Denier; Ma, Nan; Wolke, Ralf; Wehner, Birgit; Sun, Jia; Spindler, Gerald; Mu, Qing; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred
    Elemental Carbon (EC) has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number and/or mass size distributions were evaluated with observations at the central European background site Melpitz. The fine mode particle concentration was reasonably well simulated, but the coarse mode was substantially overestimated by the model mainly due to the plume with high EC concentration in coarse mode emitted by a nearby point source. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that the coarse mode EC (ECc) emitted from the nearby point sources might be overestimated by a factor of 2–10. The fraction of ECc was overestimated in the emission inventory by about 10–30 % for Russia and 5–10 % for Eastern Europe (e.g., Poland and Belarus). This incorrect size-dependent EC emission results in a shorter atmospheric life time of EC particles and inhibits the long-range transport of EC. A case study showed that this effect caused an underestimation of 20–40 % in the EC mass concentration in Germany under eastern wind pattern.
  • Item
    In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol
    (Milton Park : Taylor & Francis, 2017) Schladitz, Alexander; Müller, Thomas; Nowak, Andreas; Kandler, Konrad; Lieke, Kirsten; Massling, Andreas; Wiedensohler, Alfred
    Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.
  • Item
    Variation of CCN activity during new particle formation events in the North China Plain
    (München : European Geopyhsical Union, 2016) Ma, Nan; Zhao, Chunsheng; Tao, Jiangchuan; Wu, Zhijun; Kecorius, Simonas; Wang, Zhibin; Größ, Johannes; Liu, Hongjian; Bian, Yuxuan; Kuang, Ye; Teich, Monique; Spindler, Gerald; Müller, Konrad; van Pinxteren, Dominik; Herrmann, Hartmut; Hu, Min; Wiedensohler, Alfred
    The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity, and volatility during a 4-week intensive field experiment in summertime at a regional atmospheric observatory in Xianghe. Interestingly, based on a case study, two types of NPF events were found, in which the newly formed particles exhibited either a higher or a lower hygroscopicity. Therefore, the CCN activity of newly formed particles in different NPF events was largely different, indicating that a simple parameterization of particle CCN activity during NPF events over the NCP might lead to poor estimates of CCN number concentration (NCCN). For a more accurate estimation of the potential NCCN during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate NCCN, the influence of the variation of particle CCN activity on the calculation of NCCN during NPF events was evaluated based on the two parameterizations. It was found that NCCN might be underestimated by up to 30 % if a single activation ratio curve (representative of the region and season) were to be used in the calculation; and might be underestimated by up to 50 % if a fixed critical diameter (representative of the region and season) were used. Therefore, we suggest not using a fixed critical diameter in the prediction of NCCN in NPF. If real-time CCN activity data are not available, using a proper fixed activation ratio curve can be an alternative but compromised choice.
  • Item
    Properties of cloud condensation nuclei (CCN) in the trade wind marine boundary layer of the western North Atlantic
    (München : European Geopyhsical Union, 2016) Kristensen, Thomas B.; Müller, Thomas; Kandler, Konrad; Benker, Nathalie; Hartmann, Markus; Prospero, Joseph M.; Wiedensohler, Alfred; Stratmann, Frank
    Cloud optical properties in the trade winds over the eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the tropical western North Atlantic, in order to assess the respective roles of inorganic sulfate, organic species, long-range transported mineral dust and sea-salt particles. Measurements were carried out in June–July 2013, on the east coast of Barbados, and included CCN number concentrations, particle number size distributions and offline analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulfate species and organic compounds.
  • Item
    Regional Saharan dust modelling during the SAMUM 2006 campaign
    (Milton Park : Taylor & Francis, 2017) Heinold, Bernd; Tegen, Ina; Esselborn, Michael; Kandler, Konrad; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Tesche, Matthias; Weinzierl, Bernadett; Ansmann, Albert; Althausen, Dietrich; Laurent, Benoit; Massling, Andreas; Müller, Thomas; Petzold, Andreas; Schepanski, Kerstin; Wiedensohler, Alfred
    The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.
  • Item
    Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska
    (Katlenburg-Lindau : EGU, 2017) Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.; Barrett, Tate E.; China, Swarup; Sheesley, Rebecca J.; Laskin, Alexander; Wiedensohler, Alfred; Tuch, Thomas; Pratt, Kerri A.
    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiaġvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13-4 μm projected area diameter) and real-time single-particle mass spectrometry (0.2-1.5 μm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 % of the study), our results show that fresh sea spray aerosol contributed ∼ 20 %, by number, of particles between 0.13 and 0.4 μm, 40-70 % between 0.4 and 1 μm, and 80-100 % between 1 and 4 μm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13-1 μm) combustion-derived particles (20-50 % organic carbon, by number; 5-10 % soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 μm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm-3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.
  • Item
    Structure, variability and persistence of the submicrometre marine aerosol
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Birmili, Wolfram; Wiedensohler, Alfred; Nowak, Andreas; Tuch, Thomas
    Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.
  • Item
    Aerosol number to volume ratios in Southwest Portugal during ACE-2
    (Milton Park : Taylor & Francis, 2017) Dusek, Ulrike; Covert, David S.; Wiedensohler, Alfred; Neusúss, Christian; Weise, Diana
    Past studies have indicated that long-term averages of the aerosol number to volume ratios (defined as the number of particles larger than a certain diameter divided by the particle volume over some range less than 1 μm) show little variability over the Atlantic. This work presents number to volume ratios (R) measured during the ACE-2 experiment on the land-based Sagres field site located in Southwest Portugal. The values of R measured in Sagres compare reasonably well with previous measurements over the Atlantic. The main emphasis of this work is therefore to investigate more closely possible reasons for the observed stability of the number to volume ratio. Aerosol number size distributions measured in Sagres are parametrized by the sum of two log-normal distributions fitted to the accumulation and to the Aitken mode. The main factor that limits the variability of R is that the parameters of these log-normal distributions are not always independent but show some covariance. In polluted air mass types correlations between parameters of the Aitken and accumulation mode are mostly responsible for stabilizing R. In marine air mass types the variability of R is reduced by an inverse relationship between the accumulation-mode mean diameter and standard deviation, consistent with condensational processes and cloud processing working on the aerosol. However, despite this reduction, the variability of R in marine air mass types is still considerable and R is linearly dependent on the number concentration of particles larger than 90 nm. This partly due to a mil of Aitken-mode particles extending to sizes larger than 90 nm.