Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity

2016, Su, Hang, Cheng, Yafang, Ma, Nan, Wang, Zhibin, Wang, Xiaoxiang, Pöhlker, Mira L., Nillius, Björn, Wiedensohler, Alfred, Pöschl, Ulrich

The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to the understanding of aerosol–cloud interactions and their impact on climate. They can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach may also be applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for aircraft and long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.

Loading...
Thumbnail Image
Item

In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol

2017, Schladitz, Alexander, Müller, Thomas, Nowak, Andreas, Kandler, Konrad, Lieke, Kirsten, Massling, Andreas, Wiedensohler, Alfred

Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.

Loading...
Thumbnail Image
Item

Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

2018, Schmale, Julia, Henning, Silvia, Decesari, Stefano, Henzing, Bas, Keskinen, Helmi, Sellegri, Karine, Ovadnevaite, Jurgita, Pöhlker, Mira L., Brito, Joel, Bougiatioti, Aikaterini, Kristensson, Adam, Kalivitis, Nikos, Stavroulas, Iasonas, Carbone, Samara, Jefferson, Anne, Park, Minsu, Schlag, Patrick, Iwamoto, Yoko, Aalto, Pasi, Äijälä, Mikko, Bukowiecki, Nicolas, Ehn, Mikael, Frank, Göran, Fröhlich, Roman, Frumau, Arnoud, Herrmann, Erik, Herrmann, Hartmut, Holzinger, Rupert, Kos, Gerard, Kulmala, Markku, Mihalopoulos, Nikolaos, Nenes, Athanasios, O'Dowd, Colin, Petäjä, Tuukka, Picard, David, Pöhlker, Christopher, Pöschl, Ulrich, Poulain, Laurent, Prévôt, André Stephan Henry, Swietlicki, Erik, Andreae, Meinrat O., Artaxo, Paulo, Wiedensohler, Alfred, Ogren, John, Matsuki, Atsushi, Yum, Seong Soo, Stratmann, Frank, Baltensperger, Urs, Gysel, Martin

Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.

Loading...
Thumbnail Image
Item

Variation of CCN activity during new particle formation events in the North China Plain

2016, Ma, Nan, Zhao, Chunsheng, Tao, Jiangchuan, Wu, Zhijun, Kecorius, Simonas, Wang, Zhibin, Größ, Johannes, Liu, Hongjian, Bian, Yuxuan, Kuang, Ye, Teich, Monique, Spindler, Gerald, Müller, Konrad, van Pinxteren, Dominik, Herrmann, Hartmut, Hu, Min, Wiedensohler, Alfred

The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity, and volatility during a 4-week intensive field experiment in summertime at a regional atmospheric observatory in Xianghe. Interestingly, based on a case study, two types of NPF events were found, in which the newly formed particles exhibited either a higher or a lower hygroscopicity. Therefore, the CCN activity of newly formed particles in different NPF events was largely different, indicating that a simple parameterization of particle CCN activity during NPF events over the NCP might lead to poor estimates of CCN number concentration (NCCN). For a more accurate estimation of the potential NCCN during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate NCCN, the influence of the variation of particle CCN activity on the calculation of NCCN during NPF events was evaluated based on the two parameterizations. It was found that NCCN might be underestimated by up to 30 % if a single activation ratio curve (representative of the region and season) were to be used in the calculation; and might be underestimated by up to 50 % if a fixed critical diameter (representative of the region and season) were used. Therefore, we suggest not using a fixed critical diameter in the prediction of NCCN in NPF. If real-time CCN activity data are not available, using a proper fixed activation ratio curve can be an alternative but compromised choice.