Search Results

Now showing 1 - 4 of 4
  • Item
    Global analysis of continental boundary layer new particle formation based on long-term measurements
    (Katlenburg-Lindau : EGU, 2018) Nieminen, Tuomo; Kerminen, Veli-Matti; Petäjä, Tuukka; Aalto, Pasi P.; Arshinov, Mikhail; Asmi, Eija; Baltensperger, Urs; Beddows, David C. S.; Beukes, Johan Paul; Collins, Don; Ding, Aijun; Harrison, Roy M.; Henzing, Bas; Hooda, Rakesh; Hu, Min; Hõrrak, Urmas; Kivekäs, Niku; Komsaare, Kaupo; Krejci, Radovan; Kristensson, Adam; Laakso, Lauri; Laaksonen, Ari; Leaitch, W. Richard; Lihavainen, Heikki; Mihalopoulos, Nikolaos; Németh, Zoltán; Nie, Wei; O'Dowd, Colin; Salma, Imre; Sellegri, Karine; Svenningsson, Birgitta; Swietlicki, Erik; Tunved, Peter; Ulevicius, Vidmantas; Vakkari, Ville; Vana, Marko; Wiedensohler, Alfred; Wu, Zhijun; Virtanen, Annele; Kulmala, Markku
    Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  • Item
    Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa
    (Katlenburg-Lindau : EGU, 2017) Chiloane, Kgaugelo Euphinia; Beukes, Johan Paul; van Zyl, Pieter Gideon; Maritz, Petra; Vakkari, Ville; Josipovic, Miroslav; Venter, Andrew Derick; Jaars, Kerneels; Tiitta, Petri; Kulmala, Markku; Wiedensohler, Alfred; Liousse, Catherine; Mkhatshwa, Gabisile Vuyisile; Ramandh, Avishkar; Laakso, Lauri
    After carbon dioxide (CO2), aerosol black carbon (BC) is considered to be the second most important contributor to global warming. This paper presents equivalent black carbon (eBC) (derived from an optical absorption method) data collected from three sites in the interior of South Africa where continuous measurements were conducted, i.e. Elandsfontein, Welgegund and Marikana, as well elemental carbon (EC) (determined by evolved carbon method) data at five sites where samples were collected once a month on a filter and analysed offline, i.e. Louis Trichardt, Skukuza, Vaal Triangle, Amersfoort and Botsalano. Analyses of eBC and EC spatial mass concentration patterns across the eight sites indicate that the mass concentrations in the South African interior are in general higher than what has been reported for the developed world and that different sources are likely to influence different sites. The mean eBC or EC mass concentrations for the background sites (Welgegund, Louis Trichardt, Skukuza, Botsalano) and sites influenced by industrial activities and/or nearby settlements (Elandsfontein, Marikana, Vaal Triangle and Amersfoort) ranged between 0.7 and 1.1, and 1.3 and 1.4 μg m-3, respectively. Similar seasonal patterns were observed at all three sites where continuous measurement data were collected (Elandsfontein, Marikana and Welgegund), with the highest eBC mass concentrations measured from June to October, indicating contributions from household combustion in the cold winter months (June-August), as well as savannah and grassland fires during the dry season (May to mid-October). Diurnal patterns of eBC at Elandsfontein, Marikana and Welgegund indicated maximum concentrations in the early mornings and late evenings, and minima during daytime. From the patterns it could be deduced that for Marikana and Welgegund, household combustion, as well as savannah and grassland fires, were the most significant sources, respectively. Possible contributing sources were explored in greater detail for Elandsfontein, with five main sources being identified as coal-fired power stations, pyrometallurgical smelters, traffic, household combustion, as well as savannah and grassland fires. Industries on the Mpumalanga Highveld are often blamed for all forms of pollution, due to the NO2 hotspot over this area that is attributed to NOx emissions from industries and vehicle emissions from the Johannesburg. Pretoria megacity. However, a comparison of source strengths indicated that household combustion as well as savannah and grassland fires were the most significant sources of eBC, particularly during winter and spring months, while coal-fired power stations, pyrometallurgical smelters and traffic contribute to eBC mass concentration levels year round.
  • Item
    Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns
    (München : European Geopyhsical Union, 2016) Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; van der Gon, Hugo A.C.Denier; Crippa, Monica; Prévôt, André S.H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.
    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m−3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m−3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d−1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00–14:00 LT) and 20 % during dinner time (20:00–22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias =  −2.3 µg m−3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.
  • Item
    Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: New insight into the absorption enhancement of black carbon in the atmosphere
    (München : European Geopyhsical Union, 2016) Zhang, Yuxuan; Zhang, Qiang; Cheng, Yafang; Su, Hang; Kecorius, Simonas; Wang, Zhibin; Wu, Zhijun; Hu, Min; Zhu, Tong; Wiedensohler, Alfred; He, Kebin
    The morphology and density of black carbon (BC) cores in internally mixed BC (In-BC) particles affect their mixing state and absorption enhancement. In this work, we developed a new method to measure the morphology and effective density of the BC cores of ambient In-BC particles using a single-particle soot photometer (SP2) and a volatility tandem differential mobility analyzer (VTDMA) during the CAREBeijing-2013 campaign from 8 to 27 July 2013 at Xianghe Observatory. This new measurement system can select size-resolved ambient In-BC particles and measure the mobility diameter and mass of the In-BC cores. The morphology and effective density of the ambient In-BC cores are then calculated. For the In-BC cores in the atmosphere, changes in their dynamic shape factor (χ) and effective density (ρeff) can be characterized as a function of the aging process (Dp∕Dc) measured by SP2 and VTDMA. During an intensive field study, the ambient In-BC cores had an average shape factor χ of  ∼ 1.2 and an average density of  ∼ 1.2 g cm−3, indicating that ambient In-BC cores have a near-spherical shape with an internal void of  ∼ 30 %. From the measured morphology and density, the average shell ∕ core ratio and absorption enhancement (Eab) of ambient BC were estimated to be 2.1–2.7 and 1.6–1.9, respectively, for In-BC particles with sizes of 200–350 nm. When the In-BC cores were assumed to have a void-free BC sphere with a density of 1.8 g cm−3, the shell ∕ core ratio and Eab were overestimated by  ∼ 13 and  ∼ 17 %, respectively. The new approach developed in this work improves the calculations of the mixing state and optical properties of ambient In-BC particles by quantifying the changes in the morphology and density of ambient In-BC cores during aging.