Search Results

Now showing 1 - 2 of 2
  • Item
    On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
    (Katlenburg-Lindau : Copernicus, 2022) Weger, Michael; Baars, Holger; Gebauer, Henriette; Merkel, Maik; Wiedensohler, Alfred; Heinold, Bernd
    There is a gap between the need for city-wide air-quality simulations considering the intra-urban variability and mircoscale dispersion features and the computational capacities that conventional urban microscale models require. This gap can be bridged by targeting model applications on the gray zone situated between the mesoscale and large-eddy scale. The urban dispersion model CAIRDIO is a new contribution to the class of computational-fluid dynamics models operating in this scale range. It uses a diffuse-obstacle boundary method to represent buildings as physical obstacles at gray-zone resolutions in the order of tens of meters. The main objective of this approach is to find an acceptable compromise between computationally inexpensive grid sizes for spatially comprehensive applications and the required accuracy in the description of building and boundary-layer effects. In this paper, CAIRDIO is applied on the simulation of black carbon and particulate matter dispersion for an entire mid-size city using a uniform horizontal grid spacing of 40gm. For model evaluation, measurements from five operational air monitoring stations representative for the urban background and high-traffic roads are used. The comparison also includes the mesoscale host simulation, which provides the boundary conditions. The measurements show a dominant influence of the mixing layer evolution at background sites, and therefore both the mesoscale and large-eddy simulation (LES) results are in good agreement with the observed air pollution levels. In contrast, at the high-traffic sites the proximity to emissions and the interactions with the building environment lead to a significantly amplified diurnal variability in pollutant concentrations. These urban road conditions can only be reasonably well represented by CAIRDIO while the meosocale simulation indiscriminately reproduces a typical urban-background profile, resulting in a large positive model bias. Remaining model discrepancies are further addressed by a grid-spacing sensitivity study using offline-nested refined domains. The results show that modeled peak concentrations within street canyons can be further improved by decreasing the horizontal grid spacing down to 10gm, but not beyond. Obviously, the default grid spacing of 40gm is too coarse to represent the specific environment within narrow street canyons. The accuracy gains from the grid refinements are still only modest compared to the remaining model error, which to a large extent can be attributed to uncertainties in the emissions. Finally, the study shows that the proposed gray-scale modeling is a promising downscaling approach for urban air-quality applications. The results, however, also show that aspects other than the actual resolution of flow patterns and numerical effects can determine the simulations at the urban microscale.
  • Item
    Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis
    (London : BioMed Central, 2011) Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra
    Background: Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods: Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. Results: We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions: Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.