Search Results

Now showing 1 - 10 of 108
  • Item
    Ion-particle interactions during particle formation and growth at a coniferous forest site in central Europe
    (München : European Geopyhsical Union, 2014) Gonser, S.G.; Klein, F.; Birmili, W.; Größ, J.; Kulmala, M.; Manninen, H.E.; Wiedensohler, A.; Held, A.
    In this work, we examined the interaction of ions and neutral particles during atmospheric new particle formation (NPF) events. The analysis is based on simultaneous field measurements of atmospheric ions and total particles using a neutral cluster and air ion spectrometer (NAIS) across the diameter range 2–25 nm. The Waldstein research site is located in a spruce forest in NE Bavaria, Southern Germany, known for enhanced radon concentrations, presumably leading to elevated ionization rates. Our observations show that the occurrence of the ion nucleation mode preceded that of the total particle nucleation mode during all analyzed NPF events. The time difference between the appearance of 2 nm ions and 2 nm total particles was typically about 20 to 30 min. A cross correlation analysis showed a rapid decrease of the time difference between the ion and total modes during the growth process. Eventually, this time delay vanished when both ions and total particles did grow to larger diameters. Considering the growth rates of ions and total particles separately, total particles exhibited enhanced growth rates at diameters below 15 nm. This observation cannot be explained by condensation or coagulation, because these processes would act more efficiently on charged particles compared to neutral particles. To explain our observations, we propose a mechanism including recombination and attachment of continuously present cluster ions with the ion nucleation mode and the neutral nucleation mode, respectively.
  • Item
    A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers
    (München : European Geopyhsical Union, 2014) Schladitz, A.; Merkel, M.; Bastian, S.; Birmili, W.; Weinhold, K.; Löschau, G.; Wiedensohler, A.
    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher data accuracy for cohort health and climate research studies.
  • Item
    Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
    (München : European Geopyhsical Union, 2014) Beddows, D.C.S.; Dall'Osto, M.; Harrison, R.M.; Kulmala, M.; Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.M.; Sellegri, K.; Birmili, W.; Bukowiecki, N.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Swietlicki, E.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Meinhardt, F.; Ries, L.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.
    Cluster~analysis of particle number size distributions from~background sites across Europe~is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze.~The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected.~These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6–0.9 nm h−1. Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. ~While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  • Item
    Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes
    (München : European Geopyhsical Union, 2010) Yue, D.L.; Hu, M.; Wu, Z.J.; Guo, S.; Wen, M.T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X.S.; Li, Y.P.; Zeng, L.M.; Zhang, Y.H.
    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm−3, about 40% lower than that at GZ, (2.9±1.1)×104 cm−3. The total particle volume concentration at BG was 94±34 μm3 cm−3, similar to that at GZ, 96±43 μm3 cm−3. More 20–100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100–660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m−3) and BG (69±58 μg m−3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42−, NO3− accounted for about 60% in 100–660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42−, NO3−, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.
  • Item
    Chemistry of new particle growth in mixed urban and biogenic emissions - Insights from CARES
    (München : European Geopyhsical Union, 2014) Setyan, A.; Song, C.; Merkel, M.; Knighton, W.B.; Onasch, T.B.; Canagaratna, M.R.; Worsnop, D.R.; Wiedensohler, A.; Shilling, J.E.; Zhang, Q.
    Regional new particle formation and growth events (NPEs) were observed on most days over the Sacramento and western Sierra foothills area of California in June 2010 during the Carbonaceous Aerosols and Radiative Effect Study (CARES). Simultaneous particle measurements at both the T0 (Sacramento, urban site) and the T1 (Cool, rural site located ~40 km northeast of Sacramento) sites of CARES indicate that the NPEs usually occurred in the morning with the appearance of an ultrafine mode at ~15 nm (in mobility diameter, Dm, measured by a mobility particle size spectrometer operating in the range 10-858 nm) followed by the growth of this modal diameter to ~50 nm in the afternoon. These events were generally associated with southwesterly winds bringing urban plumes from Sacramento to the T1 site. The growth rate was on average higher at T0 (7.1 ± 2.7 nm h−1) than at T1 (6.2 ± 2.5 nm h−1), likely due to stronger anthropogenic influences at T0. Using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), we investigated the evolution of the size-resolved chemical composition of new particles at T1. Our results indicate that the growth of new particles was driven primarily by the condensation of oxygenated organic species and, to a lesser extent, ammonium sulfate. New particles appear to be fully neutralized during growth, consistent with high NH3 concentration in the region. Nitrogen-containing organic ions (i.e., CHN+, CH4N+, C2H3N+, and C2H4N+) that are indicative of the presence of alkyl-amine species in submicrometer particles enhanced significantly during the NPE days, suggesting that amines might have played a role in these events. Our results also indicate that the bulk composition of the ultrafine mode organics during NPEs was very similar to that of anthropogenically influenced secondary organic aerosol (SOA) observed in transported urban plumes. In addition, the concentrations of species representative of urban emissions (e.g., black carbon, CO, NOx, and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale.
  • Item
    Observations of turbulence-induced new particle formation in the residual layer
    (München : European Geopyhsical Union, 2010) Wehner, B.; Siebert, H.; Ansmann, A.; Ditas, F.; Seifert, P.; Stratmann, F.; Wiedensohler, A.; Apituley, A.; Shaw, R.A.; Manninen, H.E.; Kulmala, M.
    Aerosol particle measurements in the atmospheric boundary layer performed by a helicopter-borne measurement payload and by a lidar system from a case study during the IMPACT field campaign in Cabauw (NL) are presented. Layers of increased number concentrations of ultrafine particles were observed in the residual layer, indicating relatively recent new-particle formation. These layers were characterized by a sub-critical Richardson number and concomitant increased turbulence. Turbulent mixing is likely to lead to local supersaturation of possible precursor gases which are essential for new particle formation. Observed peaks in the number concentrations of ultrafine particles at ground level are connected to the new particle formation in the residual layer by boundary layer development and vertical mixing.
  • Item
    Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements
    (München : European Geopyhsical Union, 2015) Petetin, H.; Beekmann, M.; Colomb, A.; van der Gon, H.A.C.Denier; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q.J.
    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.
  • Item
    Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: Results from the EFEU campaign
    (München : European Geopyhsical Union, 2008) Hungershoefer, K.; Zeromskiene, K.; Iinuma, Y.; Helas, G.; Trentmann, J.; Trautmann, T.; Parmar, R.S.; Wiedensohler, A.; Andreae, M.O.; Schmid, O.
    A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa), respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass) and 1.56−0.010i (musasa) (λ=0.55 μm). The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa) fractions (8 to 15%) obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.
  • Item
    Dust events in Beijing, China (2004–2006): Comparison of ground-based measurements with columnar integrated observations
    (München : European Geopyhsical Union, 2009) Wu, Z.J.; Cheng, Y.F.; Hu, M.; Wehner, B.; Sugimoto, N.; Wiedensohler, A.
    Ambient particle number size distributions spanning three years were used to characterize the frequency and intensity of atmospheric dust events in the urban areas of Beijing, China in combination with AERONET sun/sky radiometer data. Dust events were classified into two types based on the differences in particle number and volume size distributions and local weather conditions. This categorization was confirmed by aerosol index images, columnar aerosol optical properties, and vertical potential temperature profiles. During the type-1 events, dust particles dominated the total particle volume concentration (<10 μm), with a relative share over 70%. Anthropogenic particles in the Aitken and accumulation mode played a subordinate role here because of high wind speeds (>4 m s−1). The type-2 events occurred in rather stagnant air masses and were characterized by a lower volume fraction of coarse mode particles (on average, 55%). Columnar optical properties showed that the superposition of dust and anthropogenic aerosols in type-2 events resulted in a much higher AOD (average: 1.51) than for the rather pure dust aerosols in type-1 events (average AOD: 0.36). A discrepancy was found between the ground-based and column integrated particle volume size distributions, especially for the coarse mode particles. This discrepancy likely originates from both the limited comparability of particle volume size distributions derived from Sun photometer and in situ number size distributions, and the inhomogeneous vertical distribution of particles during dust events.
  • Item
    General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales
    (München : European Geopyhsical Union, 2011) Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Carslaw, K.S.; Pöschl, U.; Baltensperger, U.; Hov, Ø.; Brenquier, J.-L.; Pandis, S.N.; Facchini, M.C.; Hansson, H.-C.; Wiedensohler, A.; O'Dowd, C.D.; Boers, R.; Boucher, O.; de Leeuw, G.; Denier van der Gon, H.A.C.; Feichter, J.; Krejci, R.; Laj, P.; Lihavainen, H.; Lohmann, U.; McFiggans, G.; Mentel, T.; Pilinis, C.; Riipinen, I.; Schulz, M.; Stohl, A.; Swietlicki, E.; Vignati, E.; Alves, C.; Amann, M.; Ammann, M.; Arabas, S.; Artaxo, P.; Baars, H.; Beddows, D.C.S.; Bergström, R.; Beukes, J.P.; Bilde, M.; Burkhart, J.F.; Canonaco, F.; Clegg, S.L.; Coe, H.; Crumeyrolle, S.; D'Anna, B.; Decesari, S.; Gilardoni, S.; Fischer, M.; Fjaeraa, A.M.; Fountoukis, C.; George, C.; Gomes, L.; Halloran, P.; Hamburger, T.; Harrison, R.M.; Herrmann, H.; Hoffmann, T.; Hoose, C.; Hu, M.; Hyvärinen, A.; Hõrrak, U.; Iinuma, Y.; Iversen, T.; Josipovic, M.; Kanakidou, M.; Kiendler-Scharr, A.; Kirkevåg, A.; Kiss, G.; Klimont, Z.; Kolmonen, P.; Komppula, M.; Kristjánsson, J.-E.; Laakso, L.; Laaksonen, A.; Labonnote, L.; Lanz, V.A.; Lehtinen, K.E.J.; Rizzo, L.V.; Makkonen, R.; Manninen, H.E.; McMeeking, G.; Merikanto, J.; Minikin, A.; Mirme, S.; Morgan, W.T.; Nemitz, E.; O'Donnell, D.; Panwar, T.S.; Pawlowska, H.; Petzold, A.; Pienaar, J.J.; Pio, C.; Plass-Duelmer, C.; Prévôt, A.S.H.; Pryor, S.; Reddington, C.L.; Roberts, G.; Rosenfeld, D.; Schwarz, J.; Seland, Ø.; Sellegri, K.; Shen, X.J.; Shiraiwa, M.; Siebert, H.; Sierau, B.; Simpson, D.; Sun, J.Y.; Topping, D.; Tunved, P.; Vaattovaara, P.; Vakkari, V.; Veefkind, J.P.; Visschedijk, A.; Vuollekoski, H.; Vuolo, R.; Wehner, B.; Wildt, J.; Woodward, S.; Worsnop, D.R.; van Zadelhoff, G.-J.; Zardini, A.A.; Zhang, K.; van Zyl, P.G.; Kerminen, V.-M.
    In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.