Search Results

Now showing 1 - 9 of 9
  • Item
    In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Schladitz, A.; Müller, T.; Kaaden, N.; Massling, A.; Kandler, K.; Ebert, M.; Weinbruch, S.; Deutscher, C.; Wiedensohler, A.
    In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.
  • Item
    Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1
    (Milton Park : Taylor & Francis, 2017) Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.
    During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10−3, 3.4 × 10−3 and 2.0 × 10−3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10−3, 1.6 × 10−3 and 4.5 × 10−4.
  • Item
    Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic - Results from the third route of 'CARIBIC'
    (Milton Park : Taylor & Francis, 2017) Hermann, M.; Brenninkmeijer, C.A.M.; Slemr, F.; Heintzenberg, J.; Martinsson, B.G.; Schlager, H.; Van Velthoven, P.F.J.; Wiedensohler, A.; Zahn, A.; Ziereis, H.
    Particle number and mass concentrations of submicrometer aerosol particles were determined for the upper troposphere over the mid-latitude North Atlantic within the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container project (CARIBIC, http://www.caribic-atmospheric.com). Between May 2001 and April 2002, 22 flights from Germany to the Caribbean were conducted using an automated measurement container on a B767 passenger aircraft. Spatial and seasonal probability distributions for ultrafine and Aitken mode particles as well as mass concentrations of particulate sulphur in 8–12 km altitude are presented. High particle number concentrations (mostly 2500–15 000 particles cm-3 STP) are particularly found in summer over the western North Atlantic Ocean close to the North American continent. The distributions together with an analysis of particle source processes show that deep vertical transport is the dominant process leading to most of the events with high particle number concentrations (8000 particles cm-3 STP) for ultrafine particles as well as for Aitken mode particles. This study emphasizes the importance of deep vertical transport and cloud processing for the concentration of aerosol particles in the upper troposphere.
  • Item
    Size-segregated chemical, gravimetric and number distribution-derived mass closure of the aerosol in Sagres, Portugal during ACE-2
    (Milton Park : Taylor & Francis, 2016) Neusüß, C.; Weise, D.; Birmili, W.; Wex, H.; Wiedensohler, A.; Covert, D.S.
    During the ACE-2 field campaign in the summer of 1997 an intensive, ground-based physical and chemical characterisation of the clean marine and continentally polluted aerosol was performed at Sagres, Portugal. Number size distributions of the dry aerosol in the size range 3–10 000 nm were continuously measured using DMPS and APS systems. Impactor samples were regularly taken at 60% relative humidity (RH) to obtain mass size distributions by weighing the impactor foils, and to derive a chemical mass balance by ion and carbon analysis. Hygroscopic growth factors of the metastable aerosol at 60% RH were determined to estimate the number size distribution at a relative humidity of 60%. A size segregated 3-way mass closure study was performed in this investigation for the first time. Mass size distributions at 60% RH derived from number size distribution measurements and impactors samples (weighing and chemical analysis) are compared. A good agreement was found for the comparison of total gravimetrically-determined mass with both number distribution-derived (slope=1.23/1.09; R2>0.97; depending on the parameters humidity growth and density) and chemical mass concentration (slope=1.02; R2=0.79) for particles smaller than 3 mm in diameter. Except for the smallest impactor size range relatively good correlations (slope=0.86–1.42) with small deviations (R2=0.76–0.98) for the different size fractions were found. Since uncertainties in each of the 3 methods are about 20% the observed differences in the size-segregated mass fractions can be explained by the measurement uncertainties. However, the number distributionderived mass is mostly higher than the chemically and gravimetrically determined mass, which can be explained by sampling losses of the impactor, but as well with measurement uncertainties as, e.g., the sizing of the DMPS/APS.
  • Item
    State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco
    (Milton Park : Taylor & Francis, 2017) Kaaden, N.; Massling, A.; Schladitz, A.; Müller, T.; Kandler, K.; Schütz, L.; Weinzierl, B.; Petzold, A.; Tesche, M.; Leinert, S.; Deutscher, C.; Ebert, M.; Weinbruch, S.; Wiedensohler, A.
    The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively. During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respectively, indicating that mineral dust particles can be as small as 200 nm in diameter. Lognormal functions for mineral dust number size distributions were obtained from total particle number size distributions and fractions of hydrophobic particles. The geometric mean diameter for Saharan dust particles was 715 nm during the dust event and 570 nm for the Saharan background aerosol. Measurements of hygroscopic growth showed that the Saharan aerosol consists of an anthropogenic fraction (predominantly non natural sulphate and carbonaceous particles) and of mineral dust particles. Hygroscopic growth and hysteresis curve measurements of the ‘more’ hygroscopic particle fraction indicated ammonium sulphate as a main component of the anthropogenic aerosol. Particles larger than 720 nm in diameter were completely hydrophobic meaning that mineral dust particles are not hygroscopic.
  • Item
    Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Jäckel, S.; Lieke, K.; Emmel, C.; Müller-Ebert, D.; Ebert, M.; Scheuvens, D.; Schladitz, A.; Šegvić, B.; Wiedensohler, A.; Weinbruch, S.
    A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. This work reports on the aerosol mass concentrations, size distributions and mineralogical composition of the aerosol arriving at Praia. Three dust periods were recorded during the measurements, divided by transitional periods and embedded in maritime-influenced situations. The total suspended particle mass/PM10/PM2.5 were 250/180/74μg/m3 on average for the first dust period (17–21 January) and 250/230/83μg/m3 for the second (24–26 January). The third period (28 January to 2 February) was the most intensive with 410/340/130 μg/m3. Four modes were identified in the size distribution. The first mode (50–70 nm) and partly the second (700–1100 nm) can be regarded as of marine origin, but some dust contributes to the latter. The third mode (2–4 μm) is dominated by advected dust, while the intermittently occurring fourth mode (15–70 μm) may have a local contribution. The dust consisted of kaolinite (dust/maritime period: 35%wt./25%wt.),K-feldspar (20%wt./25%wt.), illite (14%wt./10%wt.), quartz (11%wt./8%wt.), smectites (6%wt./4%wt.), plagioclase (6%wt./1%wt.), gypsum (4%wt./7%wt.), halite (2%wt./17%wt.) and calcite (2%wt./3%wt.).
  • Item
    Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results
    (Milton Park : Taylor & Francis, 2017) Leck, C.; Bigg, E.K.; Covert, D.S.; Heintzenberg, J.; Maenhaut, W.; Nilsson, E.D.; Wiedensohler, A.
    The broad aim of the Atmospheric program of the International Arctic Ocean Expedition (IAOE-91) was to test the hypothesis that marine biogenically produced dimethyl sulfide (DMS) gas can exert a significant global climatic control. The hypothesis states that DMS is transferred to the atmosphere and is oxidised to form airborne particles. Some of these grow large enough to act as cloud condensation nuclei (CCN) which help determine cloud droplet concentration. The latter has a strong influence on cloud albedo and hence on the radiation balance of the area affected. In summer, the central Arctic is a specially favourable region for studying the natural sulfur cycle in that the open waters surrounding the pack ice are the only significant sources of DMS and there are almost no anthropogenic particle sources. Concentrations of seawater and atmospheric DMS decreased at about the same rate during the period of measurements, (1 August to 6 October, latitudes 75°N to 90°N) spanning about three orders of magnitude. Methane sulfonate and nonsea salt sulfate in the submicrometer particles, which may be derived from atmospheric DMS, also decreased similarly, suggesting that the first part of the hypothesis under test was true. Influences on cloud droplet concentration and radiation balance could not be measured. Size-resolved aerosol chemistry showed a much lower proportion of methane sulfonate to be associated with supermicrometer particles than has been found elsewhere. Its molar ratio to nonsea salt sulfate suggested that the processes controlling the particulate chemistry do not exhibit a net temperature dependence. Elemental analysis of the aerosol also revealed the interesting possibility that debris from Siberian rivers transported on the moving ice represent a fairly widespread source of supermicrometer crustal material within the pack ice. Highly resolved measurements of aerosol number size distributions were made in the diameter range 3 nm to 500 nm. 3 distinct modal sizes were usually present, the “ultrafine”, “Aitken” and “accumulation” modes centred on 14, 45 and 170 nm diameter, respectively. The presence of ultrafine particles, implying recent production, was more frequent than has been found in lower latitude remote marine areas. Evidence suggests that they were mixed to the surface from higher levels. Sudden and often drastic changes in aerosol concentration and size distribution were surprisingly frequent in view of the relatively slowly changing meteorology of the central Arctic during the study period and the absence of strong pollution sources. They were most common in particles likely to have taken part in cloud formation (> 80 nm diameter). 2 factors appear to have been involved in these sudden changes. The 1st was the formation of vertical gradients in aerosol concentration due to interactions between particles and clouds or favoured regions for new particle production during periods of stability. The 2nd was sporadic localised breakdowns of the stability, bringing changed particle concentrations to the measurement level. Probable reasons for these sporadic mixing events were indicated by the structure of the Marine Boundary Layer (MBL) investigated with high resolution rawinsondes. Low level jets were present about 60% of the time, producing conditions conductive to turbulence and shear-induced waves. It is concluded that an even more detailed study of meteorological processes in the MBL in conjunction with more highly time-resolved measurements of gas-aerosol physics and chemistry appears to be essential in any future research aimed at studying the indirect, cloud mediated, effect of aerosol particles.
  • Item
    Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - A review
    (Milton Park : Taylor & Francis, 2017) Swietlicki, E.; Hansson, H.-C.; Hämeri, K.; Svenningsson, B.; Massling, A.; Mcfiggans, G.; Mcmurry, P.H.; Petäjä, T.; Tunved, P.; Gysel, M.; Topping, D.; Weingartner, E.; Baltensperger, U.; Rissler, J.; Wiedensohler, A.; Kulmala, M.
    The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the sizeresolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.
  • Item
    Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Hofmann, H.; Jäckel, S.; Jaenicke, R.; Knippertz, P.; Lieke, K.; Massling, A.; Petzold, A.; Schladitz, A.; Weinzierl, B.; Wiedensohler, A.; Zorn, S.; Weinbruch, S.
    During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).