Search Results

Now showing 1 - 10 of 18
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    Aerosol pollution maps and trends over Germany with hourly data at four rural background stations from 2009 to 2018
    (Katlenburg-Lindau : EGU, 2020) Heintzenberg, Jost; Birmili, Wolfram; Hellack, Bryan; Spindler, Gerald; Tuch, Thomas; Wiedensohler, Alfred
    A total of 10 years of hourly aerosol and gas data at four rural German stations have been combined with hourly back trajectories to the stations and inventories of the European Emissions Database for Global Atmospheric Research (EDGAR), yielding pollution maps over Germany of PM10, particle number concentrations, and equivalent black carbon (eBC). The maps reflect aerosol emissions modified with atmospheric processes during transport between sources and receptor sites. Compared to emission maps, strong western European emission centers do not dominate the downwind concentrations because their emissions are reduced by atmospheric processes on the way to the receptor area. PM10, eBC, and to some extent also particle number concentrations are rather controlled by emissions from southeastern Europe from which pollution transport often occurs under drier conditions. Newly formed particles are found in air masses from a broad sector reaching from southern Germany to western Europe, which we explain with gaseous particle precursors coming with little wet scavenging from this region. Annual emissions for 2009 of PM10, BC, SO2, and NOx were accumulated along each trajectory and compared with the corresponding measured time series. The agreement of each pair of time series was optimized by varying monthly factors and annual factors on the 2009 emissions. This approach yielded broader summer emission minima than published values that were partly displaced from the midsummer positions. The validity of connecting the ambient concentration and emission of particulate pollution was tested by calculating temporal changes in eBC for subsets of back trajectories passing over two separate prominent emission regions, region A to the northwest and B to the southeast of the measuring stations. Consistent with reported emission data the calculated emission decreases over region A are significantly stronger than over region B.
  • Item
    Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area
    (Amsterdam : Elsevier, 2015) Kecorius, Simonas; Kivekäs, Niku; Kristensson, Adam; Tuch, Thomas; Covert, David S.; Birmili, Wolfram; Lihavainen, Heikki; Hyvärinen, Antti-Pekka; Martinsson, Johan; Sporre, Moa K.; Swietlicki, Erik; Wiedensohler, Alfred; Ulevicius, Vidmantas
    In this study, we evaluated 10 months data (September 2009 to June 2010) of atmospheric aerosol particle number size distribution at three atmospheric observation stations along the Baltic Sea coast: Vavihill (upwind, Sweden), Utö (upwind, Finland), and Preila (downwind, Lithuania). Differences in aerosol particle number size distributions between the upwind and downwind stations during situations of connected atmospheric flow, when the air passed each station, were used to assess the contribution of ship emissions to the aerosol number concentration (diameter interval 50–400 nm) in the Lithuanian background coastal environment. A clear increase in particle number concentration could be noticed, by a factor of 1.9 from Utö to Preila (the average total number concentration at Utö was 791 cm−3), and by a factor of 1.6 from Vavihill to Preila (the average total number concentration at Vavihill was 998 cm−3). The simultaneous measurements of absorption Ångström exponents close to unity at Preila supported our conclusion that ship emissions in the Baltic Sea contributed to the increase in particle number concentration at Preila.
  • Item
    A phenomenology of new particle formation (NPF) at 13 European sites
    (Katlenburg-Lindau : European Geosciences Union, 2021) Bousiotis, Dimitrios; Pope, Francis D.; Beddows, David C. S.; Dall'Osto, Manuel; Massling, Andreas; Nøjgaard, Jakob Klenø; Nordstrøm, Claus; Niemi, Jarkko V.; Portin, Harri; Petäjä, Tuukka; Perez, Noemi; Alastuey, Andrés; Querol, Xavier; Kouvarakis, Giorgos; Mihalopoulos, Nikos; Vratolis, Stergios; Eleftheriadis, Konstantinos; Wiedensohler, Alfred; Weinhold, Kay; Merkel, Maik; Tuch, Thomas; Harrison, Roy M.
    New particle formation (NPF) events occur almost everywhere in the world and can play an important role as a particle source. The frequency and characteristics of NPF events vary spatially, and this variability is yet to be fully understood. In the present study, long-term particle size distribution datasets (minimum of 3 years) from 13 sites of various land uses and climates from across Europe were studied, and NPF events, deriving from secondary formation and not traffic-related nucleation, were extracted and analysed. The frequency of NPF events was consistently found to be higher at rural background sites, while the growth and formation rates of newly formed particles were higher at roadsides (though in many cases differences between the sites were small), underlining the importance of the abundance of condensable compounds of anthropogenic origin found there. The growth rate was higher in summer at all rural background sites studied. The urban background sites presented the highest uncertainty due to greater variability compared to the other two types of site. The origin of incoming air masses and the specific conditions associated with them greatly affect the characteristics of NPF events. In general, cleaner air masses present higher probability for NPF events, while the more polluted ones show higher growth rates. However, different patterns of NPF events were found, even at sites in close proximity (<ĝ€¯200ĝ€¯km), due to the different local conditions at each site. Region-wide events were also studied and were found to be associated with the same conditions as local events, although some variability was found which was associated with the different seasonality of the events at two neighbouring sites. NPF events were responsible for an increase in the number concentration of ultrafine particles of more than 400ĝ€¯% at rural background sites on the day of their occurrence. The degree of enhancement was less at urban sites due to the increased contribution of other sources within the urban environment. It is evident that, while some variables (such as solar radiation intensity, relative humidity, or the concentrations of specific pollutants) appear to have a similar influence on NPF events across all sites, it is impossible to predict the characteristics of NPF events at a site using just these variables, due to the crucial role of local conditions. © Author(s) 2021.
  • Item
    Multidecadal trend analysis of in situ aerosol radiative properties around the world
    (Katlenburg-Lindau : EGU, 2020) Collaud Coen, Martine; Andrews, Elisabeth; Alastuey, Andrés; Petkov Arsov, Todor; Backman, John; Brem, Benjamin T.; Bukowiecki, Nicolas; Couret, Cédric; Eleftheriadis, Konstantinos; Flentje, Harald; Fiebig, Markus; Gysel-Beer, Martin; Hand, Jenny L.; Hoffer, András; Hooda, Rakesh; Hueglin, Christoph; Joubert, Warren; Keywood, Melita; Eun Kim, Jeong; Kim, Sang-Woo; Labuschagne, Casper; Lin, Neng-Huei; Lin, Yong; Lund Myhre, Cathrine; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mayol-Bracero, Olga L.; Mihalopoulos, Nikos; Pandolfi, Marco; Prats, Natalia; Prenni, Anthony J.; Putaud, Jean-Philippe; Ries, Ludwig; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Sheridan, Patrick; Sherman, James Patrick; Sun, Junying; Titos, Gloria; Torres, Elvis; Tuch, Thomas; Weller, Rolf; Wiedensohler, Alfred; Zieger, Paul; Laj, Paolo
    In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient - there is a shift to statistically significant negative trends in 2009-2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes. © 2020 Royal Society of Chemistry. All rights reserved.
  • Item
    Role of the dew water on the ground surface in HONO distribution: A case measurement in Melpitz
    (Katlenburg-Lindau : EGU, 2020) Ren, Yangang; Stieger, Bastian; Spindler, Gerald; Grosselin, Benoit; Mellouki, Abdelwahid; Tuch, Thomas; Wiedensohler, Alfred; Herrmann, Hartmut
    To characterize the role of dew water for the ground surface HONO distribution, nitrous acid (HONO) measurements with a Monitor for AeRosols and Gases in ambient Air (MARGA) and a LOng Path Absorption Photometer (LOPAP) instrument were performed at the Leibniz Institute for Tropospheric Research (TROPOS) research site in Melpitz, Germany, from 19 to 29 April 2018. The dew water was also collected and analyzed from 8 to 14 May 2019 using a glass sampler. The high time resolution of HONO measurements showed characteristic diurnal variations that revealed that (i) vehicle emissions are a minor source of HONO at Melpitz station; (ii) the heterogeneous conversion of NO2 to HONO on the ground surface dominates HONO production at night; (iii) there is significant nighttime loss of HONO with a sink strength of 0.16±0.12ppbv h-1; and (iv) dew water with mean NO-2 of 7.91±2.14 μgm-2 could serve as a temporary HONO source in the morning when the dew droplets evaporate. The nocturnal observations of HONO and NO2 allowed the direct evaluation of the ground uptake coefficients for these species at night: γNO2→HONO = 2.4±10-7 to 3.5±10-6, γHONO;ground = 1.7×10-5 to 2.8×10-4. A chemical model demonstrated that HONO deposition to the ground surface at night was 90 %-100% of the calculated unknown HONO source in the morning. These results suggest that dew water on the ground surface was controlling the temporal HONO distribution rather than straightforward NO2-HONO conversion. This can strongly enhance the OH reactivity throughout the morning time or in other planted areas that provide a large amount of ground surface based on the OH production rate calculation. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Measuring soot particles from automotive exhaust emissions
    (Les Ulis : EDP Sciences, 2014) Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul
    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.
  • Item
    Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018
    (Katlenburg-Lindau : EGU, 2020) Sun, Jia; Birmili, Wolfram; Hermann, Markus; Tuch, Thomas; Weinhold, Kay; Merkel, Maik; Rasch, Fabian; Müller, Thomas; Schladitz, Alexander; Bastian, Susanne; Löschau, Gunter; Cyrys, Josef; Gu, Jianwei; Flentje, Harald; Briel, Björn; Asbach, Christoph; Kaminski, Heinz; Ries, Ludwig; Sohmer, Ralf; Gerwig, Holger; Wirtz, Klaus; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ma, Nan; Wiedensohler, Alfred
    Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).
  • Item
    A European aerosol phenomenology - 6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
    (Katlenburg-Lindau : EGU, 2018) Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensperger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Collaud Coen, Martine; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, Andras; Holubova Smejkalova, Adela; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin; Petäjä, Tuukka; Petit, Jean-Eudes; Pichon, Jean Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodríguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevicius, Vidmantas; Vaishya, Aditya; Vana, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo
    This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
  • Item
    Multi-year ACSM measurements at the central European research station Melpitz (Germany)-Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter
    (Katlenburg-Lindau : Copernicus, 2020) Poulain, Laurent; Spindler, Gerald; Grüner, Achim; Tuch, Thomas; Stieger, Bastian; van Pinxteren, Dominik; Petit, Jean-Eudes; Favez, Olivier; Herrmann, Hartmut; Wiedensohler, Alfred
    The aerosol chemical speciation monitor (ACSM) is nowadays widely used to identify and quantify the main components of fine particles in ambient air. As such, its deployment at observatory platforms is fully incorporated within the European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Regular intercomparisons are organized at the Aerosol Chemical Monitoring Calibration Center (ACMCC; part of the European Center for Aerosol Calibration, Paris, France) to ensure the consistency of the dataset, as well as instrumental performance and variability. However, in situ quality assurance remains a fundamental aspect of the instrument's stability. Here, we present and discuss the main outputs of long-term quality assurance efforts achieved for ACSM measurements at the research station Melpitz (Germany) since 2012 onwards. In order to validate the ACSM measurements over the years and to characterize seasonal variations, nitrate, sulfate, ammonium, organic, and particle mass concentrations were systematically compared against the collocated measurements of daily offline high-volume PM1 and PM2:5 filter samples and particle number size distribution (PNSD) measurements. Mass closure analysis was made by comparing the total particle mass (PM) concentration obtained by adding the mass concentration of equivalent black carbon (eBC) from the multi-angle absorption photometer (MAAP) to the ACSM chemical composition, to that of PM1 and PM2:5 during filter weighing, as well as to the derived mass concentration of PNSD. A combination of PM1 and PM2:5 filter samples helped identifying the critical importance of the upper size cutoff of the ACSM during such exercises. The ACSM-MAAP-derived mass concentrations systematically deviated from the PM1 mass when the mass concentration of the latter represented less than 60% of PM2:5, which was linked to the transmission efficiency of the aerodynamic lenses of the ACSM. The best correlations are obtained for sulfate (slopeD 0:96; R2 D 0:77) and total PM (slopeD 1:02; R2 D 0:90). Although, sulfate did not exhibit a seasonal dependency, total PM mass concentration revealed a small seasonal variability linked to the increase in non-water-soluble fractions. The nitrate suffers from a loss of ammonium nitrate during filter collection, and the contribution of organo-nitrate compounds to the ACSM nitrate signal make it difficult to directly compare the two methods. The contribution of m=z 44 (f44) to the total organic mass concentration was used to convert the ACSM organic mass (OM) to organic carbon (OC) by using a similar approach as for the aerosol mass spectrometer (AMS). The resulting estimated OCACSM was compared with the measured OCPM1 (slopeD 0:74; R2 D 0:77), indicating that the f44 signal was relatively free of interferences during this period. The PM2:5 filter samples use for the ACSM data quality might suffer from a systematic bias due to a size truncation effect as well as to the presence of chemical species that cannot be detected by the ACSM in coarse mode (e.g., sodium nitrate and sodium sulfate). This may lead to a systematic underestimation of the ACSM particle mass concentration and/or a positive artifact that artificially decreases the discrepancies between the two methods. Consequently, ACSM data validation using PM2:5 filters has to be interpreted with extreme care. The particle mass closure with the PNSD was satisfying (slopeD 0:77; R2 D 0:90 over the entire period), with a slight overestimation of the mobility particle size spectrometer (MPSS)-derived mass concentration in winter. This seasonal variability was related to a change on the PNSD and a larger contribution of the supermicrometer particles in winter. This long-term analysis between the ACSM and other collocated instruments confirms the robustness of the ACSM and its suitability for long-term measurements. Particle mass closure with the PNSD is strongly recommended to ensure the stability of the ACSM. A near-real-time mass closure procedure within the entire ACTRIS-ACSM network certainly represents an optimal quality control and assurance of both warranting the quality assurance of the ACSM measurements as well as identifying cross-instrumental biases. © Author(s) 2020.