Search Results

Now showing 1 - 3 of 3
  • Item
    Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kecorius, Simonas; Madueño, Leizel; Löndahl, Jakob; Vallar, Edgar; Galvez, Maria Cecilia; Idolor, Luisito F.; Gonzaga-Cayetano, Mylene; Müller, Thomas; Birmili, Wolfram; Wiedensohler, Alfred
    Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM 10 and PM 2.5 measures. © 2019
  • Item
    No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014
    (Columbus, Ohio : American Chemical Society, 2020) Tan, Zhaofeng; Hofzumahaus, Andreas; Lu, Keding; Brown, Steven S.; Holland, Frank; Huey, Lewis Gregory; Kiendler-Scharr, Astrid; Li, Xin; Liu, Xiaoxi; Ma, Nan; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wahner, Andreas; Wang, Yuhang; Wiedensohler, Alfred; Wu, Yusheng; Wu, Zhijun; Zeng, Limin; Zhang, Yuanhang; Fuchs, Hendrik
    The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.
  • Item
    An Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments
    (Taoyuan City : Taiwan Association for Aerosol Research (TAAR), 2020) Ahlawat, Ajit; Wiedensohler, Alfred; Mishra, Sumit Kumar
    COVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China and spread with an astonishing rate across the world. The transmission routes of SARS-CoV-2 are still debated, but recent evidence strongly suggests that COVID-19 could be transmitted via air in poorly ventilated places. Some studies also suggest the higher surface stability of SARS-CoV-2 as compared to SARS-CoV-1. It is also possible that small viral particles may enter into indoor environments from the various emission sources aided by environmental factors such as relative humidity, wind speed, temperature, thus representing a type of an aerosol transmission. Here, we explore the role of relative humidity in airborne transmission of SARS-CoV-2 virus in indoor environments based on recent studies around the world. Humidity affects both the evaporation kinematics and particle growth. In dry indoor places i.e., less humidity (< 40% RH), the chances of airborne transmission of SARS-CoV-2 are higher than that of humid places (i.e., > 90% RH). Based on earlier studies, a relative humidity of 40–60% was found to be optimal for human health in indoor places. Thus, it is extremely important to set a minimum relative humidity standard for indoor environments such as hospitals, offices and public transports for minimization of airborne spread of SARS-CoV-2. © The Author(s).