Search Results

Now showing 1 - 2 of 2
  • Item
    An Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments
    (Taoyuan City : Taiwan Association for Aerosol Research (TAAR), 2020) Ahlawat, Ajit; Wiedensohler, Alfred; Mishra, Sumit Kumar
    COVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China and spread with an astonishing rate across the world. The transmission routes of SARS-CoV-2 are still debated, but recent evidence strongly suggests that COVID-19 could be transmitted via air in poorly ventilated places. Some studies also suggest the higher surface stability of SARS-CoV-2 as compared to SARS-CoV-1. It is also possible that small viral particles may enter into indoor environments from the various emission sources aided by environmental factors such as relative humidity, wind speed, temperature, thus representing a type of an aerosol transmission. Here, we explore the role of relative humidity in airborne transmission of SARS-CoV-2 virus in indoor environments based on recent studies around the world. Humidity affects both the evaporation kinematics and particle growth. In dry indoor places i.e., less humidity (< 40% RH), the chances of airborne transmission of SARS-CoV-2 are higher than that of humid places (i.e., > 90% RH). Based on earlier studies, a relative humidity of 40–60% was found to be optimal for human health in indoor places. Thus, it is extremely important to set a minimum relative humidity standard for indoor environments such as hospitals, offices and public transports for minimization of airborne spread of SARS-CoV-2. © The Author(s).
  • Item
    The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations
    (Philadelphia, Pa.: Taylor & Francis, 2019) Freney, Evelyn; Zhang, Yunjiang; Croteau, Philip; Amodeo, Tanguy; Williams, Leah; Truong, François; Petit, Jean-Eudes; Sciare, Jean; Sarda-Esteve, Roland; Bonnaire, Nicolas; Arumae, Tarvo; Aurela, Minna; Bougiatioti, Aikaterini; Mihalopoulos, Nikolaos; Coz, Esther; Artinano, Begoña; Crenn, Vincent; Elste, Thomas; Heikkinen, Liine; Poulain, Laurent; Wiedensohler, Alfred; Herrmann, Hartmut; Priestman, Max; Alastuey, Andres; Stavroulas, Iasonas; Tobler, Anna; Vasilescu, Jeni; Zanca, Nicola; Canagaratna, Manjula; Carbone, Claudio; Flentje, Harald; Green, David; Maasikmets, Marek; Marmureanu, Luminita; Cruz Minguillon, Maria; Prevot, Andre S.H.; Gros, Valerie; Jayne, John; Favez, Olivier
    This work describes results obtained from the 2016 Aerosol Chemical Speciation Monitor (ACSM) intercomparison exercise performed at the Aerosol Chemical Monitor Calibration Center (ACMCC, France). Fifteen quadrupole ACSMs (Q_ACSM) from the European Research Infrastructure for the observation of Aerosols, Clouds and Trace gases (ACTRIS) network were calibrated using a new procedure that acquires calibration data under the same operating conditions as those used during sampling and hence gets information representative of instrument performance. The new calibration procedure notably resulted in a decrease in the spread of the measured sulfate mass concentrations, improving the reproducibility of inorganic species measurements between ACSMs as well as the consistency with co-located independent instruments. Tested calibration procedures also allowed for the investigation of artifacts in individual instruments, such as the overestimation of m/z 44 from organic aerosol. This effect was quantified by the m/z (mass-to-charge) 44 to nitrate ratio measured during ammonium nitrate calibrations, with values ranging from 0.03 to 0.26, showing that it can be significant for some instruments. The fragmentation table correction previously proposed to account for this artifact was applied to the measurements acquired during this study. For some instruments (those with high artifacts), this fragmentation table adjustment led to an “overcorrection” of the f44 (m/z 44/Org) signal. This correction based on measurements made with pure NH4NO3, assumes that the magnitude of the artifact is independent of chemical composition. Using data acquired at different NH4NO3 mixing ratios (from solutions of NH4NO3 and (NH4)2SO4) we observe that the magnitude of the artifact varies as a function of composition. Here we applied an updated correction, dependent on the ambient NO3 mass fraction, which resulted in an improved agreement in organic signal among instruments. This work illustrates the benefits of integrating new calibration procedures and artifact corrections, but also highlights the benefits of these intercomparison exercises to continue to improve our knowledge of how these instruments operate, and assist us in interpreting atmospheric chemistry. © 2019, © 2019 Author(s). Published with license by Taylor & Francis Group, LLC.