Search Results

Now showing 1 - 4 of 4
  • Item
    First results of the "Carbonaceous Aerosol in Rome and Environs (CARE)" Experiment: Beyond current standards for PM10
    (Basel, Switzerland : MDPI AG, 2017) Costabile, Francesca; Alas, Honey; Aufderheide, Michaela; Avino, Pasquale; Amato, Fulvio; Argentini, Stefania; Barnaba, Francesca; Berico, Massimo; Bernardoni, Vera; Biondi, Riccardo; Casasanta, Giampietro; Ciampichetti, Spartaco; Calzolai, Giulia; Canepari, Silvia; Conidi, Alessandro; Cordelli, Eugenia; Di Ianni, Antonio; Di Liberto, Luca; Facchini, Maria Cristina; Facci, Andrea; Frasca, Daniele; Gilardoni, Stefania; Grollino, Maria Giuseppa; Gualtieri, Maurizio; Lucarelli, Franco; Malaguti, Antonella; Manigrasso, Maurizio; Montagnoli, Mauro; Nava, Silvia; Perrino, Cinzia; Padoan, Elio; Petenko, Igor; Querol, Xavier; Simonetti, Giulia; Tranfo, Giovanna; Ubertini, Stefano; Valli, Gianluigi; Valentini, Sara; Vecchi, Roberta; Volpi, Francesca; Weinhold, Kay; Wiedensohler, Alfred; Zanini, Gabriele; Gobbi, Gian Paolo; Petralia, Ettore
    In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM) pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i) measurements with high time resolution (min to 1–2 h) at a fixed location of black carbon (eBC), elemental carbon (EC), organic carbon (OC), particle number size distribution (0.008–10 μm), major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii) 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC), and levoglucosan; (iii) mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv) characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i) preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles); (ii) assessment of the oxidative stress induced by carbonaceous aerosols; (iii) assessment of particle size dependent number doses deposited in different regions of the human body; (iv) PAHs biomonitoring (from the participants into the mobile measurements). The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address future research directions. First, we found that BC and EC mass concentration in Rome are larger than those measured in similar urban areas across Europe (the urban background mass concentration of eBC in Rome in winter being on average 2.6 ± 2.5 μg · m−3, mean eBC at the peak level hour being 5.2 (95% CI = 5.0–5.5) μg · m−3 ). Then, we discussed significant variations of carbonaceous aerosol properties occurring with time scales of minutes, and questioned on the data averaging period used in current air quality standard for PM10 (24-h). Third, we showed that the oxidative potential induced by aerosol depends on particle size and composition, the effects of toxicity being higher with lower mass concentrations and smaller particle size. Albeit this is a preliminary analysis, findings reinforce the need for an urgent update of existing air quality standards for PM10 and PM2.5 with regard to particle composition and size distribution, and data averaging period. Our results reinforce existing concerns about the toxicity of carbonaceous aerosols, support the existing evidence indicating that particle size distribution and composition may play a role in the generation of this toxicity, and remark the need to consider a shorter averaging period (<1 h) in these new standards.
  • Item
    Aerosol Particle and Black Carbon Emission Factors of Vehicular Fleet in Manila, Philippines
    (Basel, Switzerland : MDPI AG, 2019) Madueño, Leizel; Kecorius, Simonas; Birmili, Wolfram; Müller, Thomas; Simpas, James; Vallar, Edgar; Galvez, Maria Cecilia; Cayetano, Mylene; Wiedensohler, Alfred
    Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, Philippines to determine the emission factors (EFs) of particle number (PN) and equivalent black carbon (BC). The focus was on public utility jeepneys (PUJ), equipped with old technology diesel engines, widely used for public transportation. The EFs were determined by aerosol physical measurements, fleet information, and modeled dilution using the Operational Street Pollution Model (OSPM). The results show that average vehicle EFs of PN and BC in Manila is up to two orders of magnitude higher than European emission standards. Furthermore, a PUJ emits up to seven times more than a light-duty vehicles (LDVs) and contribute to more than 60% of BC emission in Manila. Unfortunately, traffic restrictions for heavy-duty vehicles do not apply to PUJs. The results presented in this work provide a framework to help support targeted traffic interventions to improve urban air quality not only in Manila, but also in other countries with a similar fleet composed of old-technology vehicles. © 2019 by the authors.
  • Item
    Exposure and Respiratory Tract Deposition Dose of Equivalent Black Carbon in High Altitudes
    (Basel, Switzerland : MDPI AG, 2020) Madueño, Leizel; Kecorius, Simonas; Andrade, Marcos; Wiedensohler, Alfred
    The traffic microenvironment accounts for a significant fraction of the total daily dose of inhaled air pollutants. The adverse effects of air pollution may be intensified in high altitudes (HA) due to increased minute ventilation (MV), which may result in higher deposition doses compared to that at sea level. Despite this, air quality studies in regions with combined high pollution levels and enhanced inhalation are limited. The main goals of this study are to investigate how the choice of travel mode (walking, microbus, and cable car ride) determines (i) the personal exposure to equivalent black carbon (eBC) and (ii) the corresponding potential respiratory deposited dose (RDD) in HA. For this investigation, we chose La Paz and El Alto in Bolivia as HA representative cities. The highest eBC exposure occurred in microbus commutes (13 μg m-3), while the highest RDD per trip was recorded while walking (6.3 μg) due to increased MV. On the other hand, the lowest eBC exposure and RDD were observed in cable car commute. Compared with similar studies done at sea level, our results revealed that a HA city should reduce exposure by 1.4 to 1.8-fold to achieve similar RDD at sea level, implying that HA cities require doubly aggressive and stringent road emission policies compared to those at sea level. © 2020 by the authors.
  • Item
    Black carbon aerosol in Rome (Italy): Inference of a long-term (2001-2017) record and related trends from AERONET sun-photometry data
    (Basel, Switzerland : MDPI AG, 2018) Di Ianni, Antonio; Costabile, Francesca; Barnaba, Francesca; Di Liberto, Luca; Weinhold, Kay; Wiedensohler, Alfred; Struckmeier, Caroline; Drewnick, Frank; Gobbi, Gian Paolo
    Surface concentration of black carbon (BC) is a key factor for the understanding of the impact of anthropogenic pollutants on human health. The majority of Italian cities lack long-term measurements of BC concentrations since such a metric is not regulated by EU legislation. This work attempts a long-term (2001–2017) inference of equivalent black carbon (eBC) concentrations in the city of Rome (Italy) based on sun-photometry data. To this end, aerosol light absorption coefficients at the surface are inferred from the ”columnar” aerosol aerosol light absorption coefficient records from the Rome Tor Vergata AERONET sun-photometer. The main focus of this work is to rescale aerosol light absorption columnar data (AERONET) to ground-level BC data. This is done by using values of mixing layer height (MLH) derived from ceilometer measurements and then by converting the absorption into eBC mass concentration through a mass–to–absorption conversion factor, the Mass Absorption Efficiency (MAE). The final aim is to obtain relevant data representative of the BC aerosol at the surface (i.e., in-situ)–so within the MLH– and then to infer a long-term record of “surface” equivalent black carbon mass concentration in Rome. To evaluate the accuracy of this procedure, we compared the AERONET-based results to in-situ measurements of aerosol light absorption coefficients (αabs) collected during some intensive field campaigns performed in Rome between 2010 and 2017. This analysis shows that different measurement methods, local emissions, and atmospheric conditions (MLH, residual layers) are some of the most important factors influencing differences between inferred and measured αabs. As a general result, ”inferred” and ”measured” αabs resulted to reach quite a good correlation (up to r = 0.73) after a screening procedure that excludes one of the major cause of discrepancy between AERONET inferred and in-situ measured αabs: the presence of highly absorbing aerosol layers at high altitude (e.g., dust), which frequently affects the Mediterranean site of Rome. Long-term trends of “inferred” αabs, eBC, and of the major optical variables that control aerosol’s direct radiative forcing (extinction aerosol optical depth, AODEXT, absorption aerosol optical depth, AODABS, and single scattering albedo, SSA) have been estimated. The Mann-Kendall statistical test associated with Sen’s slope was used to test the data for long-term trends. These show a negative trend for both AODEXT (−0.047/decade) and AODABS (−0.007/decade). The latter converts into a negative trend for the αabs of −5.9 Mm−1/decade and for eBC mass concentration of −0.76 μg/m3/decade. A positive trend is found for SSA (+0.014/decade), indicating that contribution of absorption to extinction is decreasing faster than that of scattering. These long-term trends are consistent with those of other air pollutant concentrations (i.e., PM2.5 and CO) in the Rome area. Despite some limitations, findings of this study fill a current lack in BC observations and may bear useful implications with regard to the improvement of our understanding of the impact of BC on air quality and climate in this Mediterranean urban region.