Search Results

Now showing 1 - 2 of 2
  • Item
    Unraveling the Orbital Physics in a Canonical Orbital System KCuF3
    (College Park, Md. : APS, 2021) Li, Jiemin; Xu, Lei; Garcia-Fernandez, Mirian; Nag, Abhishek; Robarts, H.C.; Walters, A.C.; Liu, X.; Zhou, Jianshi; Wohlfeld, Krzysztof; van den Brink, Jeroen; Ding, Hong; Zhou, Ke-Jin
    We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu2+  dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF3, which predominantly drives orbital ordering.
  • Item
    Unraveling the nature of spin excitations disentangled from charge contributions in a doped cuprate superconductor
    ([London] : Nature Publishing Group, 2022) Zhang, Wenliang; Agrapidis, Cliò Efthimia; Tseng, Yi; Asmara, Teguh Citra; Paris, Eugenio; Strocov, Vladimir N.; Giannini, Enrico; Nishimoto, Satoshi; Wohlfeld, Krzysztof; Schmitt, Thorsten
    The nature of the spin excitations in superconducting cuprates is a key question toward a unified understanding of the cuprate physics from long-range antiferromagnetism to superconductivity. The intense spin excitations up to the over-doped regime revealed by resonant inelastic X-ray scattering bring new insights as well as questions like how to understand their persistence or their relation to the collective excitations in ordered magnets (magnons). Here, we study the evolution of the spin excitations upon hole-doping the superconducting cuprate Bi2Sr2CaCu2O8+δ by disentangling the spin from the charge excitations in the experimental cross section. We compare our experimental results against density matrix renormalization group calculations for a t-J-like model on a square lattice. Our results unambiguously confirm the persistence of the spin excitations, which are closely connected to the persistence of short-range magnetic correlations up to high doping. This suggests that the spin excitations in hole-doped cuprates are related to magnons—albeit short-ranged.