Search Results

Now showing 1 - 5 of 5
  • Item
    Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Xu, X.; Prüfer, T.; Wolf, D.; Engelmann, H.-J.; Bischoff, L.; Hübner, R.; Heinig, K.-H.; Möller, W.; Facsko, S.; von Borany, J.; Hlawacek, G.
    For future nanoelectronic devices - such as room-temperature single electron transistors - the site-controlled formation of single Si nanocrystals (NCs) is a crucial prerequisite. Here, we report an approach to fabricate single Si NCs via medium-energy Si+ or Ne+ ion beam mixing of Si into a buried SiO2 layer followed by thermally activated phase separation. Binary collision approximation and kinetic Monte Carlo methods are conducted to gain atomistic insight into the influence of relevant experimental parameters on the Si NC formation process. Energy-filtered transmission electron microscopy is performed to obtain quantitative values on the Si NC size and distribution in dependence of the layer stack geometry, ion fluence and thermal budget. Employing a focused Ne+ beam from a helium ion microscope, we demonstrate site-controlled self-assembly of single Si NCs. Line irradiation with a fluence of 3000 Ne+/nm2 and a line width of 4 nm leads to the formation of a chain of Si NCs, and a single NC with 2.2 nm diameter is subsequently isolated and visualized in a few nanometer thin lamella prepared by a focused ion beam (FIB). The Si NC is centered between the SiO2 layers and perpendicular to the incident Ne+ beam.
  • Item
    Computer modeling of single-layer nanocluster formation in a thin SiO2 layer buried in Si by ion mixing and thermal phase decomposition
    (College Park, MD : American Institute of Physics, 2019) Prüfer, T.; Möller, W.; Heinig, K.-H.; Wolf, D.; Engelmann, H.-J.; Xu, X.; Von Borany, J.
    A single sheet of Si nanoclusters with an average diameter of about 2 nm has been formed in a 30 nm Si/7 nm SiO2/Si layer stack by 50 and 60 keV Si+ ion-beam mixing at room temperature and fluences between 8.5 ⋯ 1015 and 2.6 ⋯ 1016 ions/cm2 and by subsequent thermal annealing at a temperature above 1000 °C. Computer modeling of the process is accomplished by TRIDYN dynamic ballistic simulation of ion mixing and subsequent lattice kinetic Monte Carlo simulation of the phase decomposition of substoichiometric silicon oxide into Si nanoclusters in a SiO2 matrix. The simulation algorithms are briefly described with special emphasis on the choice of governing parameters for the present system. In comparison to the experimental results, it is concluded that the predicted ion mixing profiles overestimate the interface broadening. This discrepancy is attributed to the neglect of chemical driving forces in connection with thermal-spike induced diffusion, which tends to reconstitute the Si/SiO2 interfaces. With a corresponding correction and a suitable number of Monte Carlo steps, the experimentally obtained areal densities and average diameters of the nanoclusters are successfully reproduced.
  • Item
    Fe1-xNix alloy nanoparticles encapsulated inside carbon nanotubes: Controlled synthesis, structure and magnetic properties
    (Basel : MDPI AG, 2018) Ghunaim, R.; Damm, C.; Wolf, D.; Lubk, A.; Büchner, B.; Mertig, M.; Hampel, S.
    In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-x Nix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.
  • Item
    Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: Correlating luminescence with nanowire size and inner multishell structure
    (Berlin : De Gruyter, 2019) Prete, P.; Wolf, D.; Marzo, F.; Lovergine, N.
    The luminescence and inner structure of GaAs-AlGaAs quantum well tube (QWT) nanowires were studied using lowerature cathodoluminescence (CL) spectroscopic imaging, in combination with scanning transmission electron microscopy (STEM) tomography, allowing for the first time a robust correlation between the luminescence properties of these nanowires and their size and inner 3D structure down to the nanoscale. Besides the core luminescence and minor defects-related contributions, each nanowire showed one or more QWT peaks associated with nanowire regions of different diameters. The values of the GaAs shell thickness corresponding to each QWT peak were then determined from the nanowire diameters by employing a multishell growth model upon validation against experimental data (core diameter and GaAs and AlGaAs shell thickness) obtained from the analysis of the 3D reconstructed STEM tomogram of a GaAs-AlGaAs QWT nanowire. We found that QWT peak energies as a function of thus-estimated (3-7 nm) GaAs shell thickness are 40-120 meV below the theoretical values of exciton recombination for uniform QWTs symmetrically wrapped around a central core. However, the analysis of the 3D tomogram further evidenced azimuthal asymmetries as well as (azimuthal and axial) random fluctuations of the GaAs shell thickness, suggesting that the red-shift of QWT emissions is prominently due to carrier localization. The CL mapping of QWT emission intensities along the nanowire axis allowed to directly image the nanoscale localization of the emission, supporting the above picture. Our findings contribute to a deeper understanding of the luminescence-structure relationship in QWT nanowires and will foster their applications as efficient nanolaser sources for future monolithic integration onto silicon.
  • Item
    Holographic vector field electron tomography of three-dimensional nanomagnets
    (London : Nature Publishing Group, 2019) Wolf, D.; Biziere, N.; Sturm, S.; Reyes, D.; Wade, T.; Niermann, T.; Krehl, J.; Warot-Fonrose, B.; Büchner, B.; Snoeck, E.; Gatel, C.; Lubk, A.
    Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.