Search Results

Now showing 1 - 5 of 5
  • Item
    Building Hierarchical Martensite
    (Weinheim : Wiley-VCH, 2020) Schwabe, Stefan; Niemann, Robert; Backen, Anja; Wolf, Daniel; Damm, Christine; Walter, Tina; Seiner, Hanuš; Heczko, Oleg; Nielsch, Kornelius; Fähler, Sebastian
    Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations. © 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria
    (Weinheim : Wiley-VCH, 2019) Sturm, Sebastian; Siglreitmeier, Maria; Wolf, Daniel; Vogel, Karin; Gratz, Micha; Faivre, Damien; Lubk, Axel; Büchner, Bernd; Sturm, Elena V.; Cölfen, Helmut
    Inspired by chains of ferrimagnetic nanocrystals (NCs) in magnetotactic bacteria (MTB), the synthesis and detailed characterization of ferrimagnetic magnetite NC chain-like assemblies is reported. An easy green synthesis route in a thermoreversible gelatin hydrogel matrix is used. The structure of these magnetite chains prepared with and without gelatin is characterized by means of transmission electron microscopy, including electron tomography (ET). These structures indeed bear resemblance to the magnetite assemblies found in MTB, known for their mechanical flexibility and outstanding magnetic properties and known to crystallographically align their magnetite NCs along the strongest <111> magnetization easy axis. Using electron holography (EH) and angular dependent magnetic measurements, the magnetic interaction between the NCs and the generation of a magnetically anisotropic material can be shown. The electro- and magnetostatic modeling demonstrates that in order to precisely determine the magnetization (by means of EH) inside chain-like NCs assemblies, their exact shape, arrangement and stray-fields have to be considered (ideally obtained using ET). © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Freestanding Nanolayers of a Wide-Gap Topological Insulator through Liquid-Phase Exfoliation
    (Weinheim : Wiley-VCH, 2021) Lê Anh, Mai; Potapov, Pavel; Wolf, Daniel; Lubk, Axel; Glatz, Bernhard; Fery, Andreas; Doert, Thomas; Ruck, Michael
    The layered salt Bi14Rh3I9 is a weak three-dimensional (3D) topological insulator (TI), that is, a stack of two-dimensional (2D) TIs. It has a wide non-trivial band gap of 210 meV, which is generated by strong spin-orbit coupling, and possesses protected electronic edge-states. In the structure, charged layers of (Formula presented.) (Bi4Rh)3I]2+ honeycombs and (Formula presented.) Bi2I8]2− chains alternate. The non-trivial topology of Bi14Rh3I9 is an inherent property of the 2D intermetallic fragment. Here, the exfoliation of Bi14Rh3I9 was performed using two different chemical approaches: (a) through a reaction with n-butyllithium and poly(vinylpyrrolidone), (b) through a reaction with betaine in dimethylformamide at 55 °C. The former yielded few-layer sheets of the new compound Bi12Rh3I, while the latter led to crystalline sheets of Bi14Rh3I9 with a thickness down to 5 nm and edge-lengths up to several ten microns. X-ray diffraction and electron microscopy proved that the structure of Bi14Rh3I9 remained intact. Thus, it was assumed that the particles are still TIs. Dispersions of these flakes now allow for next steps towards the envisioned applications in nanoelectronics, such as the study of quantum coherence in deposited films, the combination with superconducting particles or films for the generation of Majorana fermions, or studies on their behavior under the influence of magnetic or electric fields or in contact with various materials occurring in devices. The method presented generally allows to exfoliate layers with high specific charges and thus the use of layered starting materials beyond van der Waals crystals. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
    (Weinheim : Wiley-VCH, 2019) Lenz, Kilian; Narkowicz, Ryszard; Wagner, Kai; Reiche, Christopher F.; Körner, Julia; Schneider, Tobias; Kákay, Attila; Schultheiss, Helmut; Weissker, Uhland; Wolf, Daniel; Suter, Dieter; Büchner, Bernd; Fassbender, Jürgen; Mühl, Thomas; Lindner, Jürgen
    The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim