Search Results

Now showing 1 - 10 of 13
  • Item
    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models
    (Katlenburg-Lindau : EGU, 2017) Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
  • Item
    An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe
    (Katlenburg-Lindau : EGU, 2018) Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; López-Romero, José María; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs. Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data). Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in the aerosol representation. The modelling results showed better skills when ARI+ACI interactions were included; hence this improvement in the representation of AOD (above 30 % in the model error) and AE (between 20 and 75 %) is important to provide a better description of aerosol-radiation-cloud interactions in regional climate models.
  • Item
    Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds
    (Katlenburg-Lindau : EGU, 2019) Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Mutzel, Anke; Böge, Olaf; Rodigast, Maria; Poulain, Laurent; van Pinxteren, Dominik; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut
    This paper presents a new CAPRAM-GECKOA protocol for mechanism auto-generation of aqueous-phase organic processes. For the development, kinetic data in the literature were reviewed and a database with 464 aqueousphase reactions of the hydroxyl radical with organic compounds and 130 nitrate radical reactions with organic compounds has been compiled and evaluated. Five different methods to predict aqueous-phase rate constants have been evaluated with the help of the kinetics database: gas-aqueous phase correlations, homologous series of various compound classes, radical reactivity comparisons, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). The quality of these prediction methods was tested as well as their suitability for automated mechanism construction. Based on this evaluation, SARs form the basis of the new CAPRAM-GECKO-A protocol. Evans-Polanyi-type correlations have been advanced to consider all available H atoms in a molecule besides the H atoms with only the weakest bond dissociation enthalpies (BDEs). The improved Evans- Polanyi-type correlations are used to predict rate constants for aqueous-phase NO3 and organic compounds reactions. Extensive tests have been performed on essential parameters and on highly uncertain parameters with limited experimental data. These sensitivity studies led to further improvements in the new CAPRAM-GECKO-A protocol but also showed current limitations. Biggest uncertainties were observed in uptake processes and the estimation of Henry's law coefficients as well as radical chemistry, in particular the degradation of alkoxy radicals. Previous estimation methods showed several deficits, which impacted particle growth. For further evaluation, a 1,3,5-trimethylbenzene oxidation experiment has been performed in the aerosol chamber "Leipziger Aerosolkammer" (LEAK) at high relative humidity conditions and compared to a multiphase mechanism using the Master Chemical Mechanism (MCMv3.2) in the gas phase and using a methylglyoxal oxidation scheme of about 600 reactions generated with the new CAPRAM-GECKO-A protocol in the aqueous phase. While it was difficult to evaluate single particle constituents due to concentrations close to the detection limits of the instruments applied, the model studies showed the importance of aqueous-phase chemistry in respect to secondary organic aerosol (SOA) formation and particle growth. The new protocol forms the basis for further CAPRAM mechanism development towards a new version 4.0. Moreover, it can be used as a supplementary tool for aerosol chambers to design and analyse experiments of chemical complexity and help to understand them on a molecular level. © 2019 Author(s).
  • Item
    Do new sea spray aerosol source functions improve the results of a regional aerosol model?
    (Amsterdam [u.a.] : Elsevier Science, 2018) Barthel, Stefan; Tegen, Ina; Wolke, Ralf
    Sea spray aerosol particle is a dominating part of the global aerosol mass load of natural origin. Thus, it strongly influences the atmospheric radiation balance and cloud properties especially over the oceans. Uncertainties of the estimated climate impacts by this aerosol type are partly caused by the uncertainties in the particle size dependent emission fluxes of sea spray aerosol particle. We present simulations with a regional aerosol transport model system in two domains, for three months and compared the model results to measurements at four stations using various sea spray aerosol particle source source functions. Despite these limitations we found the results using different source functions are within the range of most model uncertainties. Especially the model's ability to produce realistic wind speeds is crucial. Furthermore, the model results are more affected by a function correcting the emission flux for the effect of the sea surface temperature than by the use of different source functions. © 2018 The Authors
  • Item
    Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2
    (Amsterdam : Elsevier, 2014) Brunner, Dominik; Savage, Nicholas; Jorba, Oriol; Eder, Brian; Giordano, Lea; Badia, Alba; Balzarini, Alessandra; Baró, Rocío; Bianconi, Roberto; Chemel, Charles; Curci, Gabriele; Forkel, Renate; Jiménez-Guerrero, Pedro; Hirtl, Marcus; Hodzic, Alma; Honzak, Luka; Im, Ulas; Knote, Christoph; Makar, Paul; Manders-Groot, Astrid; van Meijgaard, Erik; Neal, Lucy; Pérez, Juan L.; Pirovano, Guido; San Jose, Roberto; Schröder, Wolfram; Sokhi, Ranjeet S.; Syrakov, Dimiter; Torian, Alfreida; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Yahya, Khairunnisa; Zabkar, Rahela; Zhang, Yang; Hogrefe, Christian; Galmarini, Stefano
    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional coupled chemistry and meteorology models participated in a coordinated model evaluation exercise. Each group simulated the year 2010 for a domain covering either Europe or North America or both. Here were present an operational analysis of model performance with respect to key meteorological variables relevant for atmospheric chemistry processes and air quality. These parameters include temperature and wind speed at the surface and in the vertical profile, incoming solar radiation at the ground, precipitation, and planetary boundary layer heights. A similar analysis was performed during AQMEII phase 1 (Vautard et al., 2012) for offline air quality models not directly coupled to the meteorological model core as the model systems investigated here. Similar to phase 1, we found significant overpredictions of 10-m wind speeds by most models, more pronounced during night than during daytime. The seasonal evolution of temperature was well captured with monthly mean biases below 2 K over all domains. Solar incoming radiation, precipitation and PBL heights, on the other hand, showed significant spread between models and observations suggesting that major challenges still remain in the simulation of meteorological parameters relevant for air quality and for chemistry–climate interactions at the regional scale.
  • Item
    Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data
    (München : European Geopyhsical Union, 2016) Kioutsioukis, Ioannis; Im, Ulas; Solazzo, Efisio; Bianconi, Roberto; Badia, Alba; Balzarini, Alessandra; Baró, Rocío; Bellasio, Roberto; Brunner, Dominik; Chemel, Charles; Curci, Gabriele; van der Gon, Hugo Denier; Flemming, Johannes; Forkel, Renate; Giordano, Lea; Jiménez-Guerrero, Pedro; Hirtl, Marcus; Jorba, Oriol; Manders-Groot, Astrid; Neal, Lucy; Pérez, Juan L.; Pirovano, Guidio; San Jose, Roberto; Savage, Nicholas; Schroder, Wolfram; Sokhi, Ranjeet S.; Syrakov, Dimiter; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Hogrefe, Christian; Galmarini, Stefano
    Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station's best deterministic model at no more than 60 % of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3 and lower for PM10, associated with the extent of potential changes in the joint distribution of accuracy and diversity in the ensembles. The skill enhancement was superior using the weighting scheme, but the training period required to acquire representative weights was longer compared to the sub-selecting schemes. Further development of the method is discussed in the conclusion.
  • Item
    Sea salt emission, transport and influence on size-segregated nitrate simulation: A case study in northwestern Europe by WRF-Chem
    (München : European Geopyhsical Union, 2016) Chen, Ying; Cheng, Yafang; Ma, Nan; Wolke, Ralf; Nordmann, Stephan; Schüttauf, Stephanie; Ran, Liang; Wehner, Birgit; Birmili, Wolfram; van der Gon, Hugo A.C. Denier; Mu, Qing; Barthel, Stefan; Spindler, Gerald; Stieger, Bastian; Müller, Konrad; Zheng, Guang-Jie; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred
    Sea salt aerosol (SSA) is one of the major components of primary aerosols and has significant impact on the formation of secondary inorganic particles mass on a global scale. In this study, the fully online coupled WRF-Chem model was utilized to evaluate the SSA emission scheme and its influence on the nitrate simulation in a case study in Europe during 10–20 September 2013. Meteorological conditions near the surface, wind pattern and thermal stratification structure were well reproduced by the model. Nonetheless, the coarse-mode (PM1 − 10) particle mass concentration was substantially overestimated due to the overestimation of SSA and nitrate. Compared to filter measurements at four EMEP stations (coastal stations: Bilthoven, Kollumerwaard and Vredepeel; inland station: Melpitz), the model overestimated SSA concentrations by a factor of 8–20. We found that this overestimation was mainly caused by overestimated SSA emissions over the North Sea during 16–20 September. Over the coastal regions, SSA was injected into the continental free troposphere through an “aloft bridge” (about 500 to 1000 m above the ground), a result of the different thermodynamic properties and planetary boundary layer (PBL) structure between continental and marine regions. The injected SSA was further transported inland and mixed downward to the surface through downdraft and PBL turbulence. This process extended the influence of SSA to a larger downwind region, leading, for example, to an overestimation of SSA at Melpitz, Germany, by a factor of  ∼  20. As a result, the nitrate partitioning fraction (ratio between particulate nitrate and the summation of particulate nitrate and gas-phase nitric acid) increased by about 20 % for the coarse-mode nitrate due to the overestimation of SSA at Melpitz. However, no significant difference in the partitioning fraction for the fine-mode nitrate was found. About 140 % overestimation of the coarse-mode nitrate resulted from the influence of SSA at Melpitz. In contrast, the overestimation of SSA inhibited the nitrate particle formation in the fine mode by about 20 % because of the increased consumption of precursor by coarse-mode nitrate formation.
  • Item
    Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate
    (Katlenburg-Lindau : EGU, 2020) Chen, Ying; Cheng, Yafang; Ma, Nan; Wei, Chao; Ran, Liang; Wolke, Ralf; Größ, Johannes; Wang, Qiaoqiao; Denier van der Gon, Hugo A.C.; Spindler, Gerald; Lelieveld, Jos; Tegen, Ina; Su, Hang; Wiedensohler, Alfred
    Natural sea-salt aerosols, when interacting with anthropogenic emissions, can enhance the formation of particulate nitrate. This enhancement has been suggested to increase the direct radiative forcing of nitrate, called the “mass-enhancement effect”. Through a size-resolved dynamic mass transfer modeling approach, we show that interactions with sea salt shift the nitrate from sub- to super-micron-sized particles (“redistribution effect”), and hence this lowers its efficiency for light extinction and reduces its lifetime. The redistribution effect overwhelms the mass-enhancement effect and significantly moderates nitrate cooling; e.g., the nitrate-associated aerosol optical depth can be reduced by 10 %–20 % over European polluted regions during a typical sea-salt event, in contrast to an increase by ∼10 % when only accounting for the mass-enhancement effect. Global model simulations indicate significant redistribution over coastal and offshore regions worldwide. Our study suggests a strong buffering by natural sea-salt aerosols that reduces the climate forcing of anthropogenic nitrate, which had been expected to dominate the aerosol cooling by the end of the century. Comprehensive considerations of this redistribution effect foster better understandings of climate change and nitrogen deposition.
  • Item
    Kinetic modeling studies of SOA formation from α-pinene ozonolysis
    (München : European Geopyhsical Union, 2017) Gatzsche, Kathrin; Iinuma, Yoshiteru; Tilgner, Andreas; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf
    This paper describes the implementation of a kinetic gas-particle partitioning approach used for the simulation of secondary organic aerosol (SOA) formation within the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM). The kinetic partitioning considers the diffusion of organic compounds into aerosol particles and the subsequent chemical reactions in the particle phase. The basic kinetic partitioning approach is modified by the implementation of chemical backward reaction of the solute within the particle phase as well as a composition-dependent particle-phase bulk diffusion coefficient. The adapted gas-phase chemistry mechanism for α-pinene oxidation has been updated due to the recent findings related to the formation of highly oxidized multifunctional organic compounds (HOMs). Experimental results from a LEAK (Leipziger Aerosolkammer) chamber study for α-pinene ozonolysis were compared with the model results describing this reaction system. The performed model studies reveal that the particle-phase bulk diffusion coefficient and the particle-phase reactivity are key parameters for SOA formation. Using the same particle-phase reactivity for both cases, we find that liquid particles with higher particle-phase bulk diffusion coefficients have 310 times more organic material formed in the particle phase compared to higher viscous semi-solid particles with lower particle-phase bulk diffusion coefficients. The model results demonstrate that, even with a moderate particle-phase reactivity, about 61% of the modeled organic mass consists of reaction products that are formed in the liquid particles. This finding emphasizes the potential role of SOA processing. Moreover, the initial organic aerosol mass concentration and the particle radius are of minor importance for the process of SOA formation in liquid particles. A sensitivity study shows that a 22-fold increase in particle size merely leads to a SOA increase of less than 10%. Due to two additional implementations, allowing backward reactions in the particle phase and considering a composition-dependent particle-phase bulk diffusion coefficient, the potential overprediction of the SOA mass with the basic kinetic approach is reduced by about 40%. HOMs are an important compound group in the early stage of SOA formation because they contribute up to 65% of the total SOA mass at this stage. HOMs also induce further SOA formation by providing an absorptive medium for SVOCs (semi-volatile organic compounds). This process contributes about 27% of the total organic mass. The model results are very similar to the LEAK chamber results. Overall, the sensitivity studies demonstrate that the particle reactivity and the particle-phase bulk diffusion require a better characterization in order to improve the current model implementations and to validate the assumptions made from the chamber simulations. The successful implementation and testing of the current kinetic gas-particle partitioning approach in a box model framework will allow further applications in a 3-D model for regional-scale process investigations.
  • Item
    Evaluation of the size segregation of elemental carbon (EC) emission in Europe: Influence on the simulation of EC long-range transportation
    (München : European Geopyhsical Union, 2016) Chen, Ying; Cheng, Ya-Fang; Nordmann, Stephan; Birmili, Wolfram; van der Gon, Hugo A.C. Denier; Ma, Nan; Wolke, Ralf; Wehner, Birgit; Sun, Jia; Spindler, Gerald; Mu, Qing; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred
    Elemental Carbon (EC) has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number and/or mass size distributions were evaluated with observations at the central European background site Melpitz. The fine mode particle concentration was reasonably well simulated, but the coarse mode was substantially overestimated by the model mainly due to the plume with high EC concentration in coarse mode emitted by a nearby point source. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that the coarse mode EC (ECc) emitted from the nearby point sources might be overestimated by a factor of 2–10. The fraction of ECc was overestimated in the emission inventory by about 10–30 % for Russia and 5–10 % for Eastern Europe (e.g., Poland and Belarus). This incorrect size-dependent EC emission results in a shorter atmospheric life time of EC particles and inhibits the long-range transport of EC. A case study showed that this effect caused an underestimation of 20–40 % in the EC mass concentration in Germany under eastern wind pattern.