Search Results

Now showing 1 - 6 of 6
  • Item
    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models
    (Katlenburg-Lindau : EGU, 2017) Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
  • Item
    CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-Muscat(5.04e)
    (Katlenburg-Lindau : Copernicus, 2020) Hoffmann, Erik H.; Schrödner, Roland; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut
    A condensed multiphase halogen and dimethyl sulfide (DMS) chemistry mechanism for application in chemistry transport models is developed by reducing the CAPRAM DMS module 1.0 (CAPRAM-DM1.0) and the CAPRAM halogen module 3.0 (CAPRAM-HM3.0). The reduction is achieved by determining the main oxidation pathways from analysing the mass fluxes of complex multiphase chemistry simulations with the air parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model). These simulations are designed to cover both pristine and polluted marine boundary layer conditions. Overall, the reduced CAPRAM-DM1.0 contains 32 gas-phase reactions, 5 phase transfers, and 12 aqueous-phase reactions, of which two processes are described as equilibrium reactions. The reduced CAPRAM-HM3.0 contains 199 gas-phase reactions, 23 phase transfers, and 87 aqueous-phase reactions. For the aqueous-phase chemistry, 39 processes are described as chemical equilibrium reactions. A comparison of simulations using the complete CAPRAM-DM1.0 and CAPRAM-HM3.0 mechanisms against the reduced ones indicates that the relative deviations are below 5 % for important inorganic and organic air pollutants and key reactive species under pristine ocean and polluted conditions. The reduced mechanism has been implemented into the chemical transport model COSMO-MUSCAT and tested by performing 2D simulations under prescribed meteorological conditions that investigate the effect of stable (stratiform cloud) and more unstable meteorological conditions (convective clouds) on marine multiphase chemistry. The simulated maximum concentration of HCl is of the order of 109 molecules cm−3 and that of BrO is around 1×107 molecules cm−3, reproducing the range of ambient measurements. Afterwards, the oxidation pathways of DMS in a cloudy marine atmosphere have been investigated in detail. The simulations demonstrate that clouds have both a direct and an indirect photochemical effect on the multiphase processing of DMS and its oxidation products. The direct photochemical effect is related to in-cloud chemistry that leads to high dimethyl sulfoxide (DMSO) oxidation rates and a subsequently enhanced formation of methane sulfonic acid compared to aerosol chemistry. The indirect photochemical effect is characterized by cloud shading, which occurs particularly in the case of stratiform clouds. The lower photolysis rate affects the activation of Br atoms and consequently lowers the formation of BrO radicals. The corresponding DMS oxidation flux is lowered by up to 30 % under thick optical clouds. Moreover, high updraught velocities lead to a strong vertical mixing of DMS into the free troposphere predominately under cloudy conditions. The photolysis of hypohalous acids (HOX, X = Cl, Br, or I) is reduced as well, resulting in higher HOX-driven sulfite-to-sulfate oxidation in aerosol particles below stratiform clouds. Altogether, the present model simulations have demonstrated the ability of the reduced mechanism to be applied in studying marine aerosol–cloud processing effects in regional models such as COSMO-MUSCAT. The reduced mechanism can be used also by other regional models for more adequate interpretations of complex marine field measurement data.
  • Item
    Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite data
    (Katlenburg-Lindau : Copernicus, 2017) Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina
    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (Muscat) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°g × g0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5g%, and the cloud droplet number concentration is reduced by 21.5g%.
  • Item
    Do new sea spray aerosol source functions improve the results of a regional aerosol model?
    (Amsterdam [u.a.] : Elsevier Science, 2018) Barthel, Stefan; Tegen, Ina; Wolke, Ralf
    Sea spray aerosol particle is a dominating part of the global aerosol mass load of natural origin. Thus, it strongly influences the atmospheric radiation balance and cloud properties especially over the oceans. Uncertainties of the estimated climate impacts by this aerosol type are partly caused by the uncertainties in the particle size dependent emission fluxes of sea spray aerosol particle. We present simulations with a regional aerosol transport model system in two domains, for three months and compared the model results to measurements at four stations using various sea spray aerosol particle source source functions. Despite these limitations we found the results using different source functions are within the range of most model uncertainties. Especially the model's ability to produce realistic wind speeds is crucial. Furthermore, the model results are more affected by a function correcting the emission flux for the effect of the sea surface temperature than by the use of different source functions. © 2018 The Authors
  • Item
    A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: Improvement of particulate nitrate prediction
    (Katlenburg-Lindau : EGU, 2018) Chen, Ying; Wolke, Ralf; Ran, Liang; Birmili, Wolfram; Spindler, Gerald; Schröder, Wolfram; Su, Hang; Cheng, Yafang; Tegen, Ina; Wiedensohler, Alfred
    The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R Combining double low line 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO-Muscat, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10-25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3-]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3-] was significantly overestimated for this period by a factor of 5-19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3-] by ∼ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17-18 and 25 September 2013) when [NO3-] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe, with an influence on [NO3-] of less than 2 % on average and 20 % at the most significant moment. To obtain a significant impact of the organic coating effect, N2O5, SOA, and NH3 need to be present when RH is high and T is low. However, those conditions were rarely fulfilled simultaneously over western and central Europe. Hence, the organic coating effect on the reaction probability of N2O5 may not be as significant as expected over western and central Europe.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model-Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
    (Katlenburg-Lindau : EGU, 2020) Jhony Rusumdar, Ahmad; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut
    Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions ("aerosol liquid water" or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed under different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90% RH-deliquesced aerosol conditions and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation rates of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical rates of the Fenton reaction (70 %), leads to a reduced processing of HOx=HOy under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction rates reveals that the most important sink, the reaction with HSO3 , contributes with a 40% higher rate in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical formation rates of the OH radical are about 50% lower in the non-ideal base case than in the ideal case, leading to lower degradation rates of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2=C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations imply that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes. © 2020 Copernicus GmbH. All rights reserved.