Search Results

Now showing 1 - 4 of 4
  • Item
    Diffusion and interface effects during preparation of all-solid microstructured fibers
    (Basel : MDPI AG, 2014) Kobelke, J.; Bierlich, J.; Wondraczek, K.; Aichele, C.; Pan, Z.; Unger, S.; Schuster, K.; Bartelt, H.
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
  • Item
    Large-area wet-chemical deposition of nanoporous tungstic silica coatings
    (London [u.a.] : RSC, 2015) Nielsen, K.H.; Wondraczek, K.; Schubert, U.S.; Wondraczek, L.
    We report on a facile procedure for synthesis of nanoporous coatings of tungstic silica through wet-chemical deposition and post-treatment of tungsten-doped potassium silicate solutions. The process relies on an aqueous washing and ion exchange step where dispersed potassium salt deposits are removed from a 150 nm silicate gel layer. Through an adjustment of the pH value of the washing agent within the solubility regime of a tungstic salt precursor, the tungsten content of the remaining nanostructured coating can be controlled. We propose this route as a universal approach for the deposition of large-area coatings of nanoporous silica with the potential for incorporating a broad variety of other dopant species. As for the present case, we observe, on the one hand, antireflective properties which enable the reduction of reflection losses from float glass by up to 3.7 percent points. On the other hand, the incorporation of nanoscale tungstic precipitates provides a lever for tailoring the coating hydrophilicity and, eventually, also surface acidity. This may provide a future route for combining optical performance with anti-fouling functionality.
  • Item
    Influence of process parameters on the incorporation of phosphorus into silica soot material during MCVD process
    (Washington, DC : OSA, 2020) Lindner, F.; Kriltz, A.; Scheffel, A.; Dellith, A.; Dellith, J.; Wondraczek, K.; Bartelt, H.
    The incorporation of phosphorus into silica soot material strongly changes during the multistep preparation process of the MCVD technology in combination with solution doping for Al and rare earths. We report on the influence of various process parameters on the phosphorus concentration, the bond types of phosphorus atoms and the relative density of the soot material. By optimization of the process the phosphorus concentration of the presintered soot could be increased by around 10% in comparison to the conventional treatment. The understanding of the interdependencies allows an improvement of the preparation process of phosphorus co-doped RE doped silica laser fibers with MCVD technology.
  • Item
    Optical breathing of nano-porous antireflective coatings through adsorption and desorption of water
    (London : Nature Publishing Group, 2014) Nielsen, K.H.; Kittel, T.; Wondraczek, K.; Wondraczek, L.
    We report on the direct consequences of reversible water adsorption on the optical performance of silica-based nanoporous antireflective (AR) coatings as they are applied on glass in photovoltaic and solar thermal energy conversion systems. In situ UV-VIS transmission spectroscopy and path length measurements through high-resolution interferometric microscopy were conducted on model films during exposure to different levels of humidity and temperature. We show that water adsorption in the pores of the film results in a notable increase of the effective refractive index of the coating. As a consequence, the AR effect is strongly reduced. The temperature regime in which the major part of the water can be driven-out rapidly lies in the range of 55°C and 135°C. Such thermal desorption was found to increase the overall transmission of a coated glass by ∼ 1%-point. As the activation energy of isothermal desorption, we find a value of about 18 kJ/mol. Within the experimental range of our data, the sorption and desorption process is fully reversible, resulting in optical breathing of the film. Nanoporous AR films with closed pore structure or high hydrophobicity may be of advantage for maintaining AR performance under air exposure.