Search Results

Now showing 1 - 2 of 2
  • Item
    Solar spectral conversion for improving the photosynthetic activity in algae reactors
    (London : Nature Publishing Group, 2013) Wondraczek, L.; Batentschuk, M.; Schmidt, M.A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J.
    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca 0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca 0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.
  • Item
    Optical breathing of nano-porous antireflective coatings through adsorption and desorption of water
    (London : Nature Publishing Group, 2014) Nielsen, K.H.; Kittel, T.; Wondraczek, K.; Wondraczek, L.
    We report on the direct consequences of reversible water adsorption on the optical performance of silica-based nanoporous antireflective (AR) coatings as they are applied on glass in photovoltaic and solar thermal energy conversion systems. In situ UV-VIS transmission spectroscopy and path length measurements through high-resolution interferometric microscopy were conducted on model films during exposure to different levels of humidity and temperature. We show that water adsorption in the pores of the film results in a notable increase of the effective refractive index of the coating. As a consequence, the AR effect is strongly reduced. The temperature regime in which the major part of the water can be driven-out rapidly lies in the range of 55°C and 135°C. Such thermal desorption was found to increase the overall transmission of a coated glass by ∼ 1%-point. As the activation energy of isothermal desorption, we find a value of about 18 kJ/mol. Within the experimental range of our data, the sorption and desorption process is fully reversible, resulting in optical breathing of the film. Nanoporous AR films with closed pore structure or high hydrophobicity may be of advantage for maintaining AR performance under air exposure.