Search Results

Now showing 1 - 4 of 4
  • Item
    The Towuti Drilling Project: paleoenvironments, biological evolution, andgeomicrobiology of a tropical Pacific lake
    (Sapporo : IODP, 2016) Russell, James M.; Bijaksana, Satria; Vogel, Hendrik; Melles, Martin; Kallmeyer, Jens; Ariztegui, Daniel; Crowe, Sean; Fajar, Silvia; Hafidz, Abdul; Haffner, Doug; Hasberg, Ascelina; Ivory, Sarah; Kelly, Christopher; King, John; Kirana, Kartika; Morlock, Marina; Noren, Anders; O'Grady, Ryan; Ordonez, Luis; Stevenson, Janelle; von Rintelen, Thomas; Vuillemin, Aurele; Watkinson, Ian; Wattrus, Nigel; Wicaksono, Satrio; Wonik, Thomas; Bauer, Kohen; Deino, Alan; Friese, André; Henny, Cynthia; Marwoto, Ristiyanti; Ngkoimani, La Ode; Nomosatryo, Sulung; Safiuddin, La Ode; Simister, Rachel; Tamuntuan, Gerald
    The Towuti Drilling Project (TDP) is an international research program, whose goal is to understand long-term environmental and climatic change in the tropical western Pacific, the impacts of geological and environmental changes on the biological evolution of aquatic taxa, and the geomicrobiology and biogeochemistry of metal-rich, ultramafic-hosted lake sediments through the scientific drilling of Lake Towuti, southern Sulawesi, Indonesia. Lake Towuti is a large tectonic lake at the downstream end of the Malili lake system, a chain of five highly biodiverse lakes that are among the oldest lakes in Southeast Asia. In 2015 we carried out a scientific drilling program on Lake Towuti using the International Continental Scientific Drilling Program (ICDP) Deep Lakes Drilling System (DLDS). We recovered a total of  ∼ 1018 m of core from 11 drilling sites with water depths ranging from 156 to 200 m. Recovery averaged 91.7 %, and the maximum drilling depth was 175 m below the lake floor, penetrating the entire sedimentary infill of the basin. Initial data from core and borehole logging indicate that these cores record the evolution of a highly dynamic tectonic and limnological system, with clear indications of orbital-scale climate variability during the mid- to late Pleistocene.
  • Item
    Drilling into an active mofette: pilot-hole study of the impact of CO2-rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic)
    (Sapporo : IODP, 2017) Bussert, Robert; Kämpf, Horst; Flechsig, Christina; Hesse, Katja; Nickschick, Tobias; Liu, Qi; Umlauft, Josefine; Vylita, Tomáš; Wagner, Dirk; Wonik, Thomas; Flores, Hortencia Estrella; Alawi, Mashal
    Microbial life in the continental "deep biosphere" is closely linked to geodynamic processes, yet this interaction is poorly studied. The Cheb Basin in the western Eger Rift (Czech Republic) is an ideal place for such a study because it displays almost permanent seismic activity along active faults with earthquake swarms up to ML 4.5 and intense degassing of mantle-derived CO2 in conduits that show up at the surface in form of mofettes. We hypothesize that microbial life is significantly accelerated in active fault zones and in CO2 conduits, due to increased fluid and substrate flow. To test this hypothesis, pilot hole HJB-1 was drilled in spring 2016 at the major mofette of the Hartoušov mofette field, after extensive pre-drill surveys to optimize the well location. After drilling through a thin caprock-like structure at 78.5 m, a CO2 blowout occurred indicating a CO2 reservoir in the underlying sandy clay. A pumping test revealed the presence of mineral water dominated by Na+, Ca2+, HCO3−, SO42− (Na-Ca-HCO3-SO4 type) having a temperature of 18.6 °C and a conductivity of 6760 µS cm−1. The high content of sulfate (1470 mg L−1) is typical of Carlsbad Spa mineral waters. The hole penetrated about 90 m of Cenozoic sediments and reached a final depth of 108.50 m in Palaeozoic schists. Core recovery was about 85 %. The cored sediments are mudstones with minor carbonates, sandstones and lignite coals that were deposited in a lacustrine environment. Deformation structures and alteration features are abundant in the core. Ongoing studies will show if they result from the flow of CO2-rich fluids or not.
  • Item
    The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2
    (Sapporo : IODP, 2007) Erbacher, Jochen; Mutterlose, Jőrg; Wilmsen, Markus; Wonik, Thomas
    [No abstract available]
  • Item
    Scientific drilling of Lake Chalco, Basin of Mexico (MexiDrill)
    (Sapporo : IODP, 2019) Brown, Erik T.; Caballero, Margarita; Cabral Cano, Enrique; Fawcett, Peter J.; Lozano-García, Socorro; Ortega, Beatriz; Pérez, Liseth; Schwalb, Antje; Smith, Victoria; Steinman, Byron A.; Stockhecke, Mona; Valero-Garcés, Blas; Watt, Sebastian; Wattrus, Nigel J.; Werne, Josef P.; Wonik, Thomas; Myrbo, Amy E.; Noren, Anders J.; O'Grady, Ryan; Schnurrenberger, Douglas
    The primary scientific objective of MexiDrill, the Basin of Mexico Drilling Program, is development of a continuous, high-resolution ∼400 kyr lacustrine record of tropical North American environmental change. The field location, in the densely populated, water-stressed Mexico City region gives this record particular societal relevance. A detailed paleoclimate reconstruction from central Mexico will enhance our understanding of long-term natural climate variability in the North American tropics and its relationship with changes at higher latitudes. The site lies at the northern margin of the Intertropical Convergence Zone (ITCZ), where modern precipitation amounts are influenced by sea surface temperatures in the Pacific and Atlantic basins. During the Last Glacial Maximum (LGM), more winter precipitation at the site is hypothesized to have been a consequence of a southward displacement of the mid-latitude westerlies. It thus represents a key spatial node for understanding large-scale hydrological variability of tropical and subtropical North America and is at an altitude (2240 m a.s.l.), typical of much of western North America. In addition, its sediments contain a rich record of pre-Holocene volcanic history; knowledge of the magnitude and frequency relationships of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity. Explosive eruption deposits will also be used to provide the backbone of a robust chronology necessary for full exploitation of the paleoclimate record. Here we report initial results from, and outreach activities of, the 2016 coring campaign.