Search Results

Now showing 1 - 3 of 3
  • Item
    Microstructural defects in hot deformed and as-transformed τ-MnAl-C
    (Lausanne : Elsevier, 2021) Zhao, P.; Feng, L.; Nielsch, K.; Woodcock, T.G.
    In this study, detailed microstructural characterisation has been conducted in both as-transformed and hot deformed samples of τ-MnAl-C using transmission electron microscopy. After hot deformation, true twins, dislocations, intrinsic stacking faults and precipitates of Mn3AlC are the main defects in the recrystallised grains. True twins and order twins were distinguished based on differences in their diffraction patterns. A significant fraction of non-recrystallised grains existed, which had microstructures based on combinations of high densities of true twins, dislocations, and deformation bands. The formation of the Mn3AlC precipitates was confirmed and related to the reduction of saturation magnetization and the increase in the Curie temperature of τ-MnAl-C after hot deformation. Antiphase boundaries, which are believed to act as nucleation sites for reverse domains, were not observed in the hot deformed sample.
  • Item
    Advanced thermal stability investigations of the Mn–Al-Ga system
    (Amsterdam [u.a.] : Elsevier, 2020) Mix, T.; Woodcock, T.G.
    A ternary Mn–Al-Ga alloy with the nominal composition Mn55Al38.57Ga6.43 was produced by arc melting. After homogenisation, the alloy consisted of the ε and γ2 phases. Appropriate heat treatments were used to transform each of these into a phase with the L10 structure. These two L10 phases had different compositions, lattice parameters and magnetic properties. In order to test the stability of the L10 phases against decomposition, heat treatments were carried out at 700 ​°C for durations of up to 14 days. The results showed that the decomposition started with formation of the β-Mn phase and subsequent appearance of the γ2 phase. The resulting diffusion gradients resulted in composition changes in the L10 phases and after 7 days, only a single, intermediate composition remained. After 14 days, the decomposition was almost complete. The decomposition of the L10 phases in the ternary Mn–Al-Ga alloy was significantly slower than in binary Mn–Al alloys.
  • Item
    The Influence of Cu-Additions on the Microstructure, Mechanical and Magnetic Properties of MnAl-C Alloys
    (London : Nature Publishing Group, 2020) Jürries, F.; Freudenberger, J.; Nielsch, K.; Woodcock, T.G.
    Alloys of the form (Mn54Al44C2)100-xCux (with x = 0, 1, 2, 4 and 6) were produced by induction melting. After homogenisation and quenching, most of the alloys consist entirely of the retained ε-phase, except for x = 6, in which the κ-phase was additionally present. After subsequent annealing, the alloys with x ≤ 2 consist entirely of a Cu-doped, ferromagnetic τ-phase, whereas the alloys with x > 2 additionally contain the κ-phase. The polarisation of the alloys at an applied field of 14 T decreases with increasing Cu-content, which is attributed i) to the dilution of the magnetic moment of the τ-phase unit cell by the Cu atoms, which do not carry a magnetic moment, and ii) at higher Cu-contents, to the formation of the κ-phase, which has a much lower polarisation than the τ-phase and therefore dilutes the net polarisation of the alloys. The Curie temperature was not affected by the Cu-additions. The stress needed to die-upset the alloys with x ≤ 2 was similar to that of the undoped alloy, whereas it was much lower for x = 4 and 6, due to the presence of intergranular layers of the κ-phase. The extrinsic magnetic properties of alloys with x ≤ 2 were improved by die-upsetting, whereas decomposition of the τ-phase during processing had a deleterious effect on the magnetic properties for higher Cu-additions.