Search Results

Now showing 1 - 2 of 2
  • Item
    Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids
    (München : European Geopyhsical Union, 2014) Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N.M.; Mauldin III, R.L.; Kurtén, T.; Paasonen, P.; Sarnela, N.; Ehn, M.; Junninen, H.; Rissanen, M.P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D.R.; Kulmala, M.; Kerminen, V.-M.; Petäjä, T.
    Oxidation processes in Earth's atmosphere are tightly connected to many environmental and human health issues and are essential drivers for biogeochemistry. Until the recent discovery of the atmospheric relevance of the reaction of stabilized Criegee intermediates (sCIs) with SO2, atmospheric oxidation processes were thought to be dominated by a few main oxidants: ozone, hydroxyl radicals (OH), nitrate radicals and, e.g. over oceans, halogen atoms such as chlorine. Here, we report results from laboratory experiments at 293 K and atmospheric pressure focusing on sCI formation from the ozonolysis of isoprene and the most abundant monoterpenes (α-pinene and limonene), and subsequent reactions of the resulting sCIs with SO2 producing sulfuric acid (H2SO4). The measured total sCI yields were (0.15 ± 0.07), (0.27 ± 0.12) and (0.58 ± 0.26) for α-pinene, limonene and isoprene, respectively. The ratio between the rate coefficient for the sCI loss (including thermal decomposition and the reaction with water vapour) and the rate coefficient for the reaction of sCI with SO2, k(loss) /k(sCI + SO2), was determined at relative humidities of 10 and 50%. Observed values represent the average reactivity of all sCIs produced from the individual alkene used in the ozonolysis. For the monoterpene-derived sCIs, the relative rate coefficients k(loss) / k(sCI + SO2) were in the range (2.0–2.4) × 1012 molecules cm−3 and nearly independent of the relative humidity. This fact points to a minor importance of the sCI + H2O reaction in the case of the sCI arising from α-pinene and limonene. For the isoprene sCIs, however, the ratio k(loss) / k(sCI + SO2) was strongly dependent on the relative humidity. To explore whether sCIs could have a more general role in atmospheric oxidation, we investigated as an example the reactivity of acetone oxide (sCI from the ozonolysis of 2,3-dimethyl-2-butene) toward small organic acids, i.e. formic and acetic acid. Acetone oxide was found to react faster with the organic acids than with SO2; k(sCI + acid) / k(sCI + SO2) = (2.8 ± 0.3) for formic acid, and k(sCI + acid) / k(sCI + SO2) = (3.4 ± 0.2) for acetic acid. This finding indicates that sCIs can play a role in the formation and loss of other atmospheric constituents besides SO2.
  • Item
    Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets
    (München : European Geopyhsical Union, 2016) Hoyle, C.R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S.C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J.C.; Craven, J.; Donahue, N.M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T.B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A.S.H.; Simon, M.; Slowik, J.G.; Steiner, G.; Tomé, A.; Vogel, A.L.; Volkamer, R.; Wagner, A.C.; Wagner, R.; Wexler, A.S.; Williamson, C.; Winkler, P.M.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M.W.; Flagan, R.C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D.R.; Baltensperger, U.
    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.