Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Extremely well isolated two-dimensional spin-1/2 antiferromagnetic Heisenberg layers with a small exchange coupling in the molecular-based magnet CuPOF

2020, Opherden, D., Nizar, N., Richardson, K., Monroe, J.C., Turnbull, M.M., Polson, M., Vela, S., Blackmore, W.J.A., Goddard, P.A., Singleton, J., Choi, E.S., Xia, F., Williams, R.C., Lancaster, T., Pratt, F.L., Blundell, S.J., Skourski, Y., Uhlarz, M., Ponomaryov, A.N., Zvyagin, S.A., Wosnitza, J., Baenitz, M., Heinmaa, I., Stern, R., Kühne, H., Landee, C.P.

We report on a comprehensive characterization of the newly synthesized Cu2+-based molecular magnet [Cu(pz)2(2-HOpy)2](PF6)2 (CuPOF), where pz=C4H4N2 and 2-HOpy=C5H4NHO. From a comparison of theoretical modeling to results of bulk magnetometry, specific heat, μ+SR, ESR, and NMR spectroscopy, this material is determined as an excellent realization of the two dimensional square-lattice S=12 antiferromagnetic Heisenberg model with a moderate intraplane nearest-neighbor exchange coupling of J/kB=6.80(5) K, and an extremely small interlayer interaction of about 1 mK. At zero field, the bulk magnetometry reveals a temperature-driven crossover of spin correlations from isotropic to XY type, caused by the presence of a weak intrinsic easy-plane anisotropy. A transition to long-range order, driven by the low-temperature XY anisotropy under the influence of the interlayer coupling, occurs at TN=1.38(2) K, as revealed by μ+SR. In applied magnetic fields, our H1-NMR data reveal a strong increase of the magnetic anisotropy, manifested by a pronounced enhancement of the transition temperature to commensurate long-range order at TN=2.8 K and 7 T. © 2020 authors.

Loading...
Thumbnail Image
Item

Dimensional reduction and incommensurate dynamic correlations in the S=1/2 triangular-lattice antiferromagnet Ca3ReO5Cl2

2022, Zvyagin, S.A., Ponomaryov, A.N., Wosnitza, J., Hirai, D., Hiroi, Z., Gen, M., Kohama, Y., Matsuo, A., Matsuda, Y.H., Kindo, K.

The observation of spinon excitations in the S=1/2 triangular antiferromagnet Ca3ReO5Cl2 reveals a quasi-one-dimensional (1D) nature of magnetic correlations, in spite of the nominally 2D magnetic structure. This phenomenon is known as frustration-induced dimensional reduction. Here, we present high-field electron spin resonance spectroscopy and magnetization studies of Ca3ReO5Cl2, allowing us not only to refine spin-Hamiltonian parameters, but also to investigate peculiarities of its low-energy spin dynamics. We argue that the presence of the uniform Dzyaloshinskii-Moriya interaction (DMI) shifts the spinon continuum in momentum space and, as a result, opens a zero-field gap at the Γ point. We observed this gap directly. The shift is found to be consistent with the structural modulation in the ordered state, suggesting this material as a perfect model triangular-lattice system, where a pure DMI-spiral ground state can be realized.

Loading...
Thumbnail Image
Item

Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5

2022, Galeski, S., Legg, H.F., Wawrzyńczak, R., Förster, T., Zherlitsyn, S., Gorbunov, D., Uhlarz, M., Lozano, P.M., Li, Q., Gu, G.D., Felser, C., Wosnitza, J., Meng, T., Gooth, J.

The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.

Loading...
Thumbnail Image
Item

Splitting of the magnetic monopole pair-creation energy in spin ice

2020, Hornung, J., Gottschall, T., Opherden, L., Antlauf, M., Schwarz, M., Kroke, E., Herrmannsdörfer, T., Wosnitza, J.

The thermodynamics in spin-ice systems are governed by emergent magnetic monopole excitations and, until now, the creation of a pair of these topological defects was associated with one specific pair-creation energy. Here, we show that the electric dipole moments inherent to the magnetic monopoles lift the degeneracy of their creation process and lead to a splitting of the pair-creation energy. We consider this finding to extend the model of magnetic relaxation in spin-ice systems and show that an electric dipole interaction in the theoretically estimated order of magnitude leads to a splitting which can explain the controversially discussed discrepancies between the measured temperature dependence of the magnetic relaxation times and previous theory. By applying our extended model to experimental data of, various spin-ice systems, we show its universal applicability and determine a dependence of the electric dipole interaction on the system parameters, which is in accordance with the theoretical model of electric dipole formation. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa

2020, Yao, M., Manna, K., Yang, Q., Fedorov, A., Voroshnin, V., Valentin Schwarze, B., Hornung, J., Chattopadhyay, S., Sun, Z., Guin, S.N., Wosnitza, J., Borrmann, H., Shekhar, C., Kumar, N., Fink, J., Sun, Y., Felser, C.

Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.

Loading...
Thumbnail Image
Item

Magnetic-field- and temperature-dependent fermi surface of CeBiPt

2006, Wosnitza, J., Goll, G., Bianchi, A.D., Bergk, B., Kozlova, N., Opahle, I., Elgazzar, S., Richter, Manuel, Stockert, O., Löhneysen, H.V., Yoshino, T., Takabatake, T.

The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification.

Loading...
Thumbnail Image
Item

Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4

2019, Zvyagin, S.A., Graf, D., Sakurai, T., Kimura, S., Nojiri, H., Wosnitza, J., Ohta, H., Ono, T., Tanaka, H.

Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.

Loading...
Thumbnail Image
Item

Unconventional Hall response in the quantum limit of HfTe5

2020, Galeski, S., Zhao, X., Wawrzyńczak, R., Meng, T., Förster, T., Lozano, P.M., Honnali, S., Lamba, N., Ehmcke, T., Markou, A., Li., Q., Gu, G., Zhu, W., Wosnitza, J., Felser, C., Chen, G.F., Gooth, J.

Interacting electrons confined to their lowest Landau level in a high magnetic field can form a variety of correlated states, some of which manifest themselves in a Hall effect. Although such states have been predicted to occur in three-dimensional semimetals, a corresponding Hall response has not yet been experimentally observed. Here, we report the observation of an unconventional Hall response in the quantum limit of the bulk semimetal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields. The additional plateau-like feature in the Hall conductivity of the lowest Landau level is accompanied by a Shubnikov-de Haas minimum in the longitudinal electrical resistivity and its magnitude relates as 3/5 to the height of the last plateau of the three-dimensional quantum Hall effect. Our findings are consistent with strong electron-electron interactions, stabilizing an unconventional variant of the Hall effect in a three-dimensional material in the quantum limit.