Search Results

Now showing 1 - 2 of 2
  • Item
    No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014
    (Columbus, Ohio : American Chemical Society, 2020) Tan, Zhaofeng; Hofzumahaus, Andreas; Lu, Keding; Brown, Steven S.; Holland, Frank; Huey, Lewis Gregory; Kiendler-Scharr, Astrid; Li, Xin; Liu, Xiaoxi; Ma, Nan; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wahner, Andreas; Wang, Yuhang; Wiedensohler, Alfred; Wu, Yusheng; Wu, Zhijun; Zeng, Limin; Zhang, Yuanhang; Fuchs, Hendrik
    The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. Ā© 2020 American Chemical Society.
  • Item
    High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
    (Columbus, Ohio : American Chemical Society, 2022) Shen, Jiali; Scholz, Wiebke; He, Xu-Cheng; Zhou, Putian; Marie, Guillaume; Wang, Mingyi; Marten, Ruby; Surdu, Mihnea; Rƶrup, Birte; Baalbaki, Rima; Amorim, Antonio; Ataei, Farnoush; Bell, David M.; Bertozzi, Barbara; Brasseur, ZoĆ©; Caudillo, LucĆ­a; Chen, Dexian; Chu, Biwu; Dada, Lubna; Duplissy, Jonathan; Finkenzeller, Henning; Granzin, Manuel; Guida, Roberto; Heinritzi, Martin; Hofbauer, Victoria; Iyer, Siddharth; Kemppainen, Deniz; Kong, Weimeng; Krechmer, Jordan E.; KĆ¼rten, Andreas; Lamkaddam, Houssni; Lee, Chuan Ping; Lopez, Brandon; Mahfouz, Naser G. A.; Manninen, Hanna E.; MassabĆ², Dario; Mauldin, Roy L.; Mentler, Bernhard; MĆ¼ller, Tatjana; Pfeifer, Joschka; Philippov, Maxim; Piedehierro, Ana A.; Roldin, Pontus; Schobesberger, Siegfried; Simon, Mario; Stolzenburg, Dominik; Tham, Yee Jun; TomĆ©, AntĆ³nio; Umo, Nsikanabasi Silas; Wang, Dongyu; Wang, Yonghong; Weber, Stefan K.; Welti, AndrĆ©; Wollesen de Jonge, Robin; Wu, Yusheng; Zauner-Wieczorek, Marcel; Zust, Felix; Baltensperger, Urs; Curtius, Joachim; Flagan, Richard C.; Hansel, Armin; Mƶhler, Ottmar; PetƤjƤ, Tuukka; Volkamer, Rainer; Kulmala, Markku; Lehtipalo, Katrianne; Rissanen, Matti; Kirkby, Jasper; El-Haddad, Imad; Bianchi, Federico; SipilƤ, Mikko; Donahue, Neil M.; Worsnop, Douglas R.
    Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 Ā°C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.