Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors

2021, Kublitski, Jonas, Fischer, Axel, Xing, Shen, Baisinger, Lukasz, Bittrich, Eva, Spoltore, Donato, Benduhn, Johannes, Vandewal, Koen, Leo, Karl

Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.

Loading...
Thumbnail Image
Item

Vertical organic permeable dual-base transistors for logic circuits

2020, Guo, Erjuan, Wu, Zhongbin, Darbandy, Ghader, Xing, Shen, Wang, Shu-Jen, Tahn, Alexander, Göbel, Michael, Kloes, Alexander, Leo, Karl, Kleemann, Hans

The main advantage of organic transistors with dual gates/bases is that the threshold voltages can be set as a function of the applied second gate/base bias, which is crucial for the application in logic gates and integrated circuits. However, incorporating a dual gate/base structure into an ultra-short channel vertical architecture represents a substantial challenge. Here, we realize a device concept of vertical organic permeable dual-base transistors, where the dual base electrodes can be used to tune the threshold voltages and change the on-currents. The detailed operation mechanisms are investigated by calibrated TCAD simulations. Finally, power-efficient logic circuits, e.g. inverter, NAND/AND computation functions are demonstrated with one single device operating at supply voltages of <2.0 V. We believe that this work offers a compact and technologically simple hardware platform with excellent application potential for vertical-channel organic transistors in complex logic circuits.