Search Results

Now showing 1 - 3 of 3
  • Item
    Human spermbots for patient-representative 3D ovarian cancer cell treatment
    (Cambridge : RSC Publ., 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Zhang, Wunan; Seaton, Melanie P. H.; Brison, Daniel R.; Edmondson, Richard J.; Taylor, Stephen S.; Nelson, Louisa; Zeng, Kang; Bagley, Steven; Ribeiro, Carla; Restrepo, Lina P.; Lucena, Elkin; Schmidt, Christine K.; Schmidt, Oliver G.
    Cellular micromotors are attractive for locally delivering high concentrations of drug, and targeting hard-to-reach disease sites such as cervical cancer and early ovarian cancer lesions by non-invasive means. Spermatozoa are highly efficient micromotors perfectly adapted to traveling up the female reproductive system. Indeed, bovine sperm-based micromotors have shown potential to carry drugs toward gynecological cancers. However, due to major differences in the molecular make-up of bovine and human sperm, a key translational bottleneck for bringing this technology closer to the clinic is to transfer this concept to human material. Here, we successfully load human sperm with Doxorubicin (DOX) and perform treatment of 3D cervical cancer and patient-representative ovarian cancer cell cultures, resulting in strong anticancer cell effects. Additionally, we define the subcellular localization of the chemotherapeutic drug within human sperm, using high-resolution optical microscopy. We also assess drug effects on sperm motility and viability over time, employing sperm samples from healthy donors as well as assisted reproduction patients. Finally, we demonstrate guidance and release of human drug-loaded sperm onto cancer tissues using magnetic microcaps, and show the sperm microcap loaded with a second anticancer drug, camptothecin (CPT), which unlike DOX is not suitable for directly loading into sperm due to its hydrophobic nature. This co-drug delivery approach opens up novel targeted combinatorial drug therapies for future applications. © 2020 The Royal Society of Chemistry.
  • Item
    Sperm-Hybrid Micromotor for Targeted Drug Delivery
    (Washington, DC : Soc., 2017-12-13) Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G.
    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm–cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.
  • Item
    IRONSperm: Sperm-templated soft magnetic microrobots
    (Washington, DC : American Association for the Advancement of Science, 2020) Magdanz, Veronika; Khalil, Islam S.M.; Simmchen, Juliane; Furtado, Guilherme P.; Mohanty, Sumit; Gebauer, Johannes; Xu, Haifeng; Klingner, Anke; Aziz, Azaam; Medina-Sánchez, Mariana; Schmidt, Oliver G.; Misra, Sarthak
    We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.