Search Results

Now showing 1 - 4 of 4
  • Item
    Engineering Kitaev exchange in stacked iridate layers: Impact of inter-layer species on in-plane magnetism
    (Cambridge : Royal Society of Chemistry, 2019) Yadav, R.; Eldeeb, M.S.; Ray, R.; Aswartham, S.; Sturza, M.I.; Nishimoto, S.; Van Den Brink, J.; Hozoi, L.
    Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MOp and M′Oq. The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature - charge imbalance between the M and M′ cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.
  • Item
    Pressure-driven collapse of the relativistic electronic ground state in a honeycomb
    (London : Nature Publishing Group, 2018) Clancy, J.P.; Gretarsson, H.; Sears, J.A.; Singh, Y.; Desgreniers, S.; Mehlawat, K.; Layek, S.; Rozenberg, G.K.; Ding, Y.; Upton, M.H.; Casa, D.; Chen, N.; Im, J.; Lee, Y.; Yadav, R.; Hozoi, L.; Efremov, D.; Van Den Brink, J.; Kim, Y.-J.
    Honeycomb-lattice quantum magnets with strong spin-orbit coupling are promising candidates for realizing a Kitaev quantum spin liquid. Although iridate materials such as Li2IrO3 and Na2IrO3 have been extensively investigated in this context, there is still considerable debate as to whether a localized relativistic wavefunction (J eff = 1/2) provides a suitable description for the electronic ground state of these materials. To address this question, we have studied the evolution of the structural and electronic properties of α-Li2IrO3 as a function of applied hydrostatic pressure using a combination of X-ray diffraction and X-ray spectroscopy techniques. We observe striking changes even under the application of only small hydrostatic pressure (P ≤ 0.1 GPa): A distortion of the Ir honeycomb lattice (via X-ray diffraction), a dramatic decrease in the strength of spin-orbit coupling effects (via X-ray absorption spectroscopy), and a significant increase in non-cubic crystal electric field splitting (via resonant inelastic X-ray scattering). Our data indicate that α-Li2IrO3 is best described by a J eff = 1/2 state at ambient pressure, but demonstrate that this state is extremely fragile and collapses under the influence of applied pressure.
  • Item
    Comment on 'Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2'
    (Bristol : IOP Publishing, 2018) Kuzian, R.O.; Klingeler, R.; Lorenz, W.E.A.; Wizent, N.; Nishimoto, S.; Nitzsche, U.; Rosner, H.; Milosavljevic, D.; Hozoi, L.; Yadav, R.; Richter, J.; Hauser, A.; Geck, J.; Hayn, R.; Yushankhai, V.; Siurakshina, L.; Monney, C.; Schmitt, T.; Schmitt, T.; Roth, G.; Ito, T.; Yamaguchi, H.; Matsuda, M.; Johnston, S.; Málek, J.; Drechsler, S.-L.
    In a recent work devoted to the magnetism of Li2CuO2, Shu et al (2017 New J. Phys. 19, 023026) have proposed a 'simplified' unfrustrated microscopic model that differs considerably from the models refined through decades of prior work. We show that the proposed model is at odds with known experimental data, including the reported magnetic susceptibility χ(T) data up to 550 K. Using an 8th order high-temperature expansion for χ(T), we show that the experimental data for Li2CuO2 are consistent with the prior model derived from inelastic neutron scattering studies. We also establish the T-range of validity for a Curie–Weiss law for the real frustrated magnetic system. We argue that the knowledge of the long-range ordered magnetic structure for T < T N and of χ(T) in a restricted T-range provides insufficient information to extract all of the relevant couplings in frustrated magnets; the saturation field and INS data must also be used to determine several exchange couplings, including the weak but decisive frustrating antiferromagnetic interchain couplings.
  • Item
    Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3
    (College Park, MD : American Physical Society, 2018) Bastien, G.; Garbarino, G.; Yadav, R.; Martinez-Casado, F.J.; Beltrán, Rodríguez, R.; Stahl, Q.; Kusch, M.; Limandri, S.P.; Ray, R.; Lampen-Kelley, P.; Mandrus, D.G.; Nagler, S.E.; Roslova, M.; Isaeva, A.; Doert, T.; Hozoi, L.; Wolter, A.U.B.; Büchner, B.; Geck, J.; Van Den Brink, J.
    Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p∼0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid.