Search Results

Now showing 1 - 5 of 5
  • Item
    Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; You, Yizhou; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Liu, Lijun; Wang, Dan; Choi, Jin-Ho; Sun, Jingyu; Yang, Ruizhi; Rummeli, Mark H.
    Sn4P3 binary alloy anode has attracted much attention, not only because of the synergistic effect of P and Sn, but also its universal popularity in alkali metal ion batteries (AIBs), including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). However, the alkali metal ion (A+) storage and capacity attenuation mechanism of Sn4P3 anodes in AIBs are not well understood. Herein, a combination of ex situ X-ray diffraction, transmission electron microscopy, and density functional theory calculations reveals that the Sn4P3 anode undergoes segregation of Sn and P, followed by the intercalation of A+ in P and then in Sn. In addition, differential electrochemical curves and ex situ XPS results demonstrate that the deep insertion of A+ in P and Sn, especially in P, contributes to the reduction in capacity of AIBs. Serious sodium metal dendrite growth causes further reduction in the capacity of SIBs, while in PIBs it is the unstable solid electrolyte interphase and sluggish dynamics that lead to capacity decay. Not only the failure mechanism, including structural deterioration, unstable SEI, dendrite growth, and sluggish kinetics, but also the modification strategy and systematic analysis method provide theoretical guidance for the development of other alloy-based anode materials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
    (Basel : MDPI, 2023) Guzenko, Nataliia; Godzierz, Marcin; Kurtyka, Klaudia; Hercog, Anna; Nocoń-Szmajda, Klaudia; Gawron, Anna; Szeluga, Urszula; Trzebicka, Barbara; Yang, Ruizhi; Rümmeli, Mark H.
    The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.
  • Item
    Phosphorus‐Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries
    (Hoboke, NJ : Wiley, 2020) Zhou, Junhua; Shi, Qitao; Ullah, Sami; Yang, Xiaoqin; Bachmatiuk, Alicja; Yang, Ruizhi; Rummeli, Mark H.
    Alkaline metal ion batteries, such as lithium‐ion batteries have been increasingly adopted in consumer electronics, electric vehicles, and large power grids because of their high energy density, power density and working voltage, and long cycle life. Phosphorus‐based materials including phosphorus anodes and metal phosphides with high theoretical capacity, natural abundance, and environmental friendliness show great potential as negative electrodes for alkaline metal ion batteries. In this review, based on the understanding of the storage mechanism of alkali metal ions, the scientific challenges are discussed, the preparation methods and solutions to address these challenges are summarized, the application prospects are demonstrated, and finally possible future research directions of phosphorus‐based materials are provided.
  • Item
    Dual‐Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganese‐Rich Cathode Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Bachmatiuk, Alicja; Liu, Lijun; Sun, Jingyu; Yang, Ruizhi; Choi, Jin-Ho; Rummeli, Mark H.
    Although lithium (Li) metal anode/lithium–manganese-rich (LMR) cathode batteries have an ultrahigh energy density, the highly active Li metal and structural deterioration of LMR can make the usage of these batteries difficult. Herein, a multifunctional electrolyte containing LiBF4 and LiFSI dual-salt additives is designed, which enables the superior cyclability of Li/LMR cells with capacity retentions of ≈83.4%, 80.4%, and 76.6% after 400 cycles at 0.5, 1, and 2 C, respectively. The dual-salt electrolyte can form a thin, uniform, and inorganic species-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). In addition, it alleviates the bulk Li corrosion and enhances the structural sustainability of LMR cathode. Moreover, the electrolyte design strategy provides insights to develop other high-voltage lithium metal batteries (HVLMBs) to enhance the cycle stability.
  • Item
    Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications
    (Weinheim : Wiley-VCH, 2019) Ullah, Sami; Hasan, Maria; Ta, Huy Q.; Zhao, Liang; Shi, Qitao; Fu, Lei; Choi, Jinho; Yang, Ruizhi; Liu, Zhongfan; Rümmeli, Mark H.
    Graphene doping principally commenced to compensate for its inert nature and create an appropriate bandgap. Doping of 3D graphene has emerged as a topic of interest because of attempts to combine its large available surface area—arising from its interconnected porous architecture—with superior catalytic, structural, chemical, and biocompatible characteristics that can be induced by doping. In light of the latest developments, this review provides an overview of the scalable chemical vapor deposition (CVD)-based growth of doped 3D graphene materials as well as their applications in various contexts, such as in devices used for energy generation and gas storage and biosensors. In particular, single- and multielement doping of 3D graphene by various dopants (such as nitrogen (N), boron (B), sulfur (S) and phosphorous (P)), the doping configurations of the resultant materials, an overview of recent developments in the field of CVD, and the influence of various parameters of CVD on graphene doping and 3D morphologies are focused in this paper. Finally, this report concludes the discussion by mentioning the existing challenges and future opportunities of these developing graphitic materials, intending to inspire the unveiling of more exciting functionalized 3D graphene morphologies and their potential properties, which can hopefully realize many possible applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim