Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Prevention and trust evaluation scheme based on interpersonal relationships for large-scale peer-to-peer networks

2014, Li, L., Kurths, J., Yang, Y., Liu, G.

In recent years, the complex network as the frontier of complex system has received more and more attention. Peer-to-peer (P2P) networks with openness, anonymity, and dynamic nature are vulnerable and are easily attacked by peers with malicious behaviors. Building trusted relationships among peers in a large-scale distributed P2P system is a fundamental and challenging research topic. Based on interpersonal relationships among peers of large-scale P2P networks, we present prevention and trust evaluation scheme, called IRTrust. The framework incorporates a strategy of identity authentication and a global trust of peers to improve the ability of resisting the malicious behaviors. It uses the quality of service (QoS), quality of recommendation (QoR), and comprehensive risk factor to evaluate the trustworthiness of a peer, which is applicable for large-scale unstructured P2P networks. The proposed IRTrust can defend against several kinds of malicious attacks, such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Our simulation results show that the proposed scheme provides greater accuracy and stronger resistance compared with existing global trust schemes. The proposed scheme has potential application in secure P2P network coding.

Loading...
Thumbnail Image
Item

Current status of research and application in vascular stents

2013, Qi, P.K., Yang, Y., Maitz, Manfred F., Huang, N.

Cardiovascular diseases have been the leading cause of death in modern society. Using vascular stents to treat these coronary and peripheral artery diseases has been one of the most effective and rapidly adopted medical interventions. During the twenty-five years' development of vascular stents, revolutionary cardiovascular stents like drug eluting stents and endothelial progenitor cells capture stents have emerged. In this review, the evolution of vascular stents is summarized, aiming to provide a glimpse into the future of vascular stents. Advanced designs, focusing on the investigations of new substrates, new platforms, new drugs and new biomolecules are currently under evaluation with promising clinical studies. The concept of "time sequence functional stent" has been raised in this paper. It presents anti-proliferative properties in the first phase after implantation and subsequently support endothelialization. It also shows long-term inertness without release of toxic ions or toxic degradation products. The success of this concept is briefly presented with a clinical study in this model stents.

Loading...
Thumbnail Image
Item

Topology identification of complex network via chaotic ant swarm algorithm

2013, Peng, H., Li, L., Kurths, J., Li, S., Yang, Y.

Nowadays, the topology of complex networks is essential in various fields as engineering, biology, physics, and other scientific fields. We know in some general cases that there may be some unknown structure parameters in a complex network. In order to identify those unknown structure parameters, a topology identification method is proposed based on a chaotic ant swarm algorithm in this paper. The problem of topology identification is converted into that of parameter optimization which can be solved by a chaotic ant algorithm. The proposed method enables us to identify the topology of the synchronization network effectively. Numerical simulations are also provided to show the effectiveness and feasibility of the proposed method.

Loading...
Thumbnail Image
Item

Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing

2017, Li, L., Xu, D., Peng, H., Kurths, J., Yang, Y.

It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.

Loading...
Thumbnail Image
Item

A reconfigurable logic cell based on a simple dynamical system

2013, Li, L., Yang, C., Hui, S., Yu, W., Kurths, J., Peng, H., Yang, Y.

This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.

Loading...
Thumbnail Image
Item

Robustness of interrelated traffic networks to cascading failures

2014, Su, Z., Li, L., Peng, H., Kurths, J., Xiao, J., Yang, Y.

The vulnerability to real-life networks against small initial attacks has been one of outstanding challenges in the study of interrelated networks. We study cascading failures in two interrelated networks S and B composed from dependency chains and connectivity links respectively. This work proposes a realistic model for cascading failures based on the redistribution of traffic flow. We study the Barabási-Albert networks (BA) and Erd's-Rényi graphs (ER) with such structure, and found that the efficiency sharply decreases with increasing percentages of the dependency nodes for removing a node randomly. Furthermore, we study the robustness of interrelated traffic networks, especially the subway and bus network in Beijing. By analyzing different attacking strategies, we uncover that the efficiency of the city traffic system has a non-equilibrium phase transition at low capacity of the networks. This explains why the pressure of the traffic overload is relaxed by singly increasing the number of small buses during rush hours. We also found that the increment of some buses may release traffic jam caused by removing a node of the bus network randomly if the damage is limited. However, the efficiencies to transfer people flow will sharper increase when the capacity of the subway network αS > α0.