Search Results

Now showing 1 - 3 of 3
  • Item
    Elevated temperature adhesion of bioinspired polymeric micropatterns to glass
    (Amsterdam : Elsevier, 2017) Barreau, Viktoriia; Yu, Dan; Hensel, René; Arzt, Eduard
    Micropatterned polymer surfaces that operate at various temperatures are required for emerging technical applications such as handling of objects or space debris. As the mechanical properties of polymers can vary significantly with temperature, adhesion performance can exhibit large variability. In the present paper, we experimentally study temperature effects on the adhesion of micropatterned adhesives (pillar length 20 μm, aspect ratios 0.4 and 2) made from three different polymers, i.e., polydimethylsiloxane (PDMS), perfluoropolyether dimethacrylate (PFPEdma), and polyurethane (PU-ht). PU specimens showed the highest pull-off stresses of about 57 kPa at 60 °C, i.e., more than twice the value of unpatterned control samples. The work of separation similarly showed a maximum at that temperature, which was identified as the glass transition temperature, Tg. PDMS and PFPEdma specimens were tested above their Tg. As a result, the adhesion properties decreased monotonically (about 50% for both materials) for temperature elevation from 20 to 120 °C. Overall, the results obtained in our study indicate that the operating temperature related to the glass transition temperature should be considered as a significant parameter for assessing the adhesion performance of micropatterned adhesives and in the technical design of adhesion devices.
  • Item
    Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2021) Bettscheider, Simon; Yu, Dan; Foster, Kimberly; McMeeking, Robert; Arzt, Eduard; Hensel, René; Booth, Jamie A.
    The adhesion of fibrillar dry adhesives, mimicking nature's principles of contact splitting, is commonly characterized by using axisymmetric probes having either a flat punch or spherical geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on the compressive preload applied when making contact and on the geometry of the probe. Together, these effects complicate comparisons of the adhesive performance of micropatterned surfaces measured in different experiments. In this work we explore these issues, extending previous theoretical treatments of this problem by considering a fully compliant backing layer with an array of discrete elastic fibrils on its surface. We compare the results of the semi-analytical model presented to existing continuum theories, particularly with respect to determining a measurement system- and procedure-independent metric for the local adhesive strength of the fibrils from the global pull-off force. It is found that the discrete nature of the interface plays a dominant role across a broad range of relevant system parameters. Accordingly, a convenient tool for simulation of a discrete array is provided. An experimental procedure is recommended for use in conjunction with this tool in order to extract a value for the local adhesive strength of the fibrils, which is independent of the other system properties (probe radius, backing layer thickness, and preload) and thus is suitable for comparison across experimental studies.
  • Item
    Tailored polyurethane acrylate blend for large-scale and high-performance micropatterned dry adhesives
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Yu, Dan; Hensel, René; Beckelmann, Dirk; Opsölder, Michael; Schäfer, Bruno; Moh, Karsten; de Oliveira, Peter William; Arzt, Eduard
    Continuous roll-to-roll fabrication is essential for transferring the idea of bio-inspired, fibrillar dry adhesives into large-scale, synthetic, high-performance adhesive tapes. Toward this aim, we investigated process parameters that allow us to control the morphology and the resulting adhesion of mushroom-shaped micropatterned surfaces. Flexible silicone templates enabled the replication process of the polyurethane acrylate pre-polymer involving UV-light-induced cross-linking. For this paper, we particularly tailored the polyurethane acrylate pre-polymer by adding chemical components to tune UV curing kinetics and to reduce oxygen inhibition of radicals. We found that higher intensities of the UV light and faster reaction kinetics improved the quality of the microstructures, i.e., a larger cap diameter of the mushroom tips was achieved. The polymer blend U6E4 exhibited the fastest curing kinetics, which resulted in a micromorphology similar to that of the Ni-shim master structures. Best adhesion results were obtained for adhesive tapes made from U6E4 with 116 kPa pull-off stress, 1.4 N cm−1 peel strength and 71 kPa shear strength. In addition, repeated attachment–detachment tests over 100,000 cycles demonstrated strong robustness and reusability.