Search Results

Now showing 1 - 2 of 2
  • Item
    Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nanofluid: Simulation and experimental study
    (Basel : MDPI AG, 2019) Arkian, Amir Hossein; Najafi, Gholamhassan; Gorjian, Shiva; Loni, Reyhaneh; Bellos, Evangelos; Yusaf, Talal
    In this study, a small dish concentrator with a cylindrical cavity receiver was experimentally investigated as the heat source of a dryer. The system was examined for operation with pure thermal oil and Al2O3/oil nanofluid as the working fluids in the solar system. Moreover, the design, the development, and the evaluation of the dried mint plant are presented in this work. Also, the solar dryer system was simulated by the SolidWorks and ANSYS CFX software. On the other side, the color histogram of the wet and dried mint samples based on the RGB method was considered. The results revealed that the different temperatures of the solar working fluids at the inlet and outlet of the cavity receiver showed similar trend data compared to the variation of the solar radiation during the experimental test. Moreover, it is found that the cavity heat gain and thermal efficiency of the solar system was improved by using the nanofluid as the solar working fluid. Furthermore, the required time for mint drying had decreased by increasing the drying temperature and increasing air speed. The highest drying time was measured equal to 320 min for the condition of the air speed equal to 0.5 m/s and the drying temperature of 30 ◦C. A good agreement was observed between the calculated numerical results and measured experimental data. Finally, based on the color histogram of the wet and dried mint samples, it was concluded that intensity amount of the red color of the mint increased with the drying process compared to intensity amount of the red color of the wet mint sample. © 2019 by the authors.
  • Item
    The Impacts of Water Pricing and Non-Pricing Policies on Sustainable Water Resources Management: A Case of Ghorveh Plain at Kurdistan Province, Iran
    (Basel : MDPI, 2019) Asaadi, Mohammad Ali; Mortazavi, Seyed Abolghasem; Zamani, Omid; Najafi, Gholam Hassan; Yusaf, Talal; Hoseini, Seyed Salar
    As with other regions of Iran, due to excessive extraction of groundwater for intense agricultural activity, Ghorveh plain, a water-scarce irrigation district in the west of Iran, has faced a serious water crisis during the last decade. The present study investigates the impacts of two scenario policies, namely, non-price policy (as a supply-oriented policy) and water pricing policies (as a demand-oriented policy) on agricultural sector of Ghorveh Plain, using positive mathematical programming (PMP). The model was calibrated by using farm-level data for the crop years in 2016–2017. Our findings indicate that applying water supply constraint policy will change the land use and cropping pattern to the crops with higher water productivity. The increase of water resource constraints can lead to the increase of water economic return which indicates a rising value of water resources shortage, warning the producers of the agriculture sector to allocate water to the crops with higher economic value under the water resources shortage conditions. In addition, the findings underline that in a situation where the price of irrigation water is low due to the low elasticity of water demand in the agriculture sector, formulating the economic instruments such as rising water prices does not solely suffice to achieve sustainable water resource management. However, mixed scenarios emphasized that the water distribution policies should be aligned with the increases in water cost. © 2019 by the authors.