Search Results

Now showing 1 - 10 of 11
  • Item
    High spatial and temporal resolution cell manipulation techniques in microchannels
    (Cambridge : Royal Society of Chemistry, 2016) Novo, Pedro; Dell’Aica, Margherita; Janasek, Dirk; Zahedi, René P.
    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
  • Item
    Why phosphoproteomics is still a challenge
    (Cambridge : Royal Society of Chemistry, 2015) Solari, Fiorella A.; Dell'Aica, Margherita; Sickmann, Albert; Zahedi, René P.
    Despite continuous improvements phosphoproteomics still faces challenges that are often neglected, e.g. partially poor recovery of phosphopeptide enrichment, assessment of phosphorylation stoichiometry, label-free quantification, poor behavior during chromatography, and general limitations of peptide-centric proteomics. Here we critically discuss current limitations that need consideration in both qualitative and quantitative studies.
  • Item
    Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana
    (Oxford : Oxford University Press, 2015) Carrie, Chris; Venne, A. Saskia; Zahedi, René P.; Soll, Jürgen
    Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing. We identified 88 and seven putative substrates for Arabidopsis ICP55 and OCT1, respectively. It was determined that the Arabidopsis ICP55 contains an almost identical cleavage site to that of Icp55 from yeast. However, it can also remove a far greater range of amino acids. The OCT1 substrates from Arabidopsis displayed no consensus cleavage motif, and do not contain the classical –10R motif identified in other eukaryotes. Arabidopsis OCT1 can also cleave presequences independently, without the prior cleavage of MPP. It was concluded that while both OCT1 and ICP55 were probably acquired early on in the evolution of mitochondria, their substrate profiles and cleavage sites have either remained very similar or diverged completely.
  • Item
    Cytomegalovirus downregulates IRE1 to repress the unfolded protein response
    (San Francisco, CA : Public Library of Science, 2013) Stahl, Sebastian; Burkhart, Julia M.; Hinte, Florian; Tirosh, Boaz; Mohr, Hermine; Zahedi, René P.; Sickmann, Albert; Ruzsics, Zsolt; Budt, Matthias; Brune, Wolfram
    During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum (ER). To restore ER homeostasis, cells initiate the unfolded protein response (UPR) by activating three ER-to-nucleus signaling pathways, of which the inositol-requiring enzyme 1 (IRE1)-dependent pathway is the most conserved. To reduce ER stress, the UPR decreases protein synthesis, increases degradation of unfolded proteins, and upregulates chaperone expression to enhance protein folding. Cytomegaloviruses, as other viral pathogens, modulate the UPR to their own advantage. However, the molecular mechanisms and the viral proteins responsible for UPR modulation remained to be identified. In this study, we investigated the modulation of IRE1 signaling by murine cytomegalovirus (MCMV) and found that IRE1-mediated mRNA splicing and expression of the X-box binding protein 1 (XBP1) is repressed in infected cells. By affinity purification, we identified the viral M50 protein as an IRE1-interacting protein. M50 expression in transfected or MCMV-infected cells induced a substantial downregulation of IRE1 protein levels. The N-terminal conserved region of M50 was found to be required for interaction with and downregulation of IRE1. Moreover, UL50, the human cytomegalovirus (HCMV) homolog of M50, affected IRE1 in the same way. Thus we concluded that IRE1 downregulation represents a previously undescribed viral strategy to curb the UPR.
  • Item
    Gene network activity in cultivated primary hepatocytes is highly similar to diseased mammalian liver tissue
    (Heidelberg : Springer, 2016) Godoy, Patricio; Widera, Agata; Schmidt-Heck, Wolfgang; Campos, Gisela; Meyer, Christoph; Cadenas, Cristina; Reif, Raymond; Stöber, Regina; Hammad, Seddik; Pütter, Larissa; Gianmoena, Kathrin; Marchan, Rosemarie; Ghallab, Ahmed; Edlund, Karolina; Nüssler, Andreas; Thasler, Wolfgang E.; Damm, Georg; Seehofer, Daniel; Weiss, Thomas S.; Dirsch, Olaf; Dahmen, Uta; Gebhardt, Rolf; Chaudhari, Umesh; Meganathan, Kesavan; Sachinidis , Agapios; Kelm, Jens; Hofmann, Ute; Zahedi, René P.; Guthke, Reinhard; Blüthgen, Nils; Dooley, Steven; Hengstler, Jan G.
    It is well known that isolation and cultivation of primary hepatocytes cause major gene expression alterations. In the present genome-wide, time-resolved study of cultivated human and mouse hepatocytes, we made the observation that expression changes in culture strongly resemble alterations in liver diseases. Hepatocytes of both species were cultivated in collagen sandwich and in monolayer conditions. Genome-wide data were also obtained from human NAFLD, cirrhosis, HCC and hepatitis B virus-infected tissue as well as mouse livers after partial hepatectomy, CCl4 intoxication, obesity, HCC and LPS. A strong similarity between cultivation and disease-induced expression alterations was observed. For example, expression changes in hepatocytes induced by 1-day cultivation and 1-day CCl4 exposure in vivo correlated with R = 0.615 (p < 0.001). Interspecies comparison identified predominantly similar responses in human and mouse hepatocytes but also a set of genes that responded differently. Unsupervised clustering of altered genes identified three main clusters: (1) downregulated genes corresponding to mature liver functions, (2) upregulation of an inflammation/RNA processing cluster and (3) upregulated migration/cell cycle-associated genes. Gene regulatory network analysis highlights overrepresented and deregulated HNF4 and CAR (Cluster 1), Krüppel-like factors MafF and ELK1 (Cluster 2) as well as ETF (Cluster 3) among the interspecies conserved key regulators of expression changes. Interventions ameliorating but not abrogating cultivation-induced responses include removal of non-parenchymal cells, generation of the hepatocytes’ own matrix in spheroids, supplementation with bile salts and siRNA-mediated suppression of key transcription factors. In conclusion, this study shows that gene regulatory network alterations of cultivated hepatocytes resemble those of inflammatory liver diseases and should therefore be considered and exploited as disease models.
  • Item
    Current strategies and findings in clinically relevant post-translational modification-specific proteomics
    (Milton Park : Taylor & Francis, 2015) Pagel, Oliver; Loroch, Stefan; Sickmann, Albert; Zahedi, René P.
    Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
  • Item
    Proteomic insights into non-small cell lung cancer: New ideas for cancer diagnosis and therapy from a functional viewpoint
    (Amsterdam : Elsevier, 2014) Linxweiler, Johannes; Kollipara, Laxmikanth; Zahedi, René P.; Lampel, Pavel; Zimmermann, Richard; Greiner, Markus
    We recently characterized SEC62 as an oncogene in non-small-cell lung cancer (NSCLC). Here we aimed to gain further insight into the molecular mechanisms of the cancer-related functions of this oncogene. We performed 2D-DIGE proteome analysis of tumor material from patients with NSCLC and of HEK293 cells stably overexpressing plasmid-encoded SEC62, combined with investigation of the Sec62 interactome. Furthermore, we analyzed the proteomic effects of siRNA-mediated depletion of the Sec62-interacting protein Sec63. We identified a comprehensive list of differentially regulated proteins, providing new insights into the molecular mechanisms of the cancer-related functions of Sec62 in cell migration, drug resistance, and Ca2+-homeostasis.
  • Item
    FYCO1 Increase and Effect of Arimoclomol–Treatment in Human VCP–Pathology
    (Basel : MDPI, 2022) Guettsches, Anne-Katrin; Meyer, Nancy; Zahedi, René P.; Evangelista, Teresinha; Muentefering, Thomas; Ruck, Tobias; Lacene, Emmanuelle; Heute, Christoph; Gonczarowska-Jorge, Humberto; Schoser, Benedikt; Krause, Sabine; Hentschel, Andreas; Vorgerd, Matthias; Roos, Andreas
    Dominant VCP–mutations cause a variety of neurological manifestations including inclusion body myopathy with early–onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin–dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP–patients. Studying the proteomic signature of VCP–mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP–patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP–patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro–survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP–etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre–clinical testing of this drug in fibroblasts.
  • Item
    The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications
    (Amsterdam : Elsevier, 2014) Venne, A. Saskia; Zahedi, René P.
    More than 450 post-translational modifications (PTMs) are known, however, currently only some of those can be enriched and analyzed from complex samples such as cell lysates. Therefore, we need additional methods and concepts to improve our understanding about the dynamic crosstalk of PTMs and the highly context-dependent regulation of protein function by so-called ‘PTM codes’. The mere focus on affinity-based enrichment techniques may not be sufficient to achieve this ambitious goal. However, the complementary use of two-dimensional chromatography-based strategies such as COFRADIC and ChaFRADIC might open new avenues for enriching a variety of so far inaccessible PTMs for large-scale proteome studies.
  • Item
    Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response
    (London : Nature Publishing Group, 2015) Martins-de-Souza, Daniel; Solari, Fiorella A.; Guest, Paul C.; Zahedi, René P.; Steiner, Johann
    Proteomics is a valuable tool to unravel molecular mechanisms involved in human disorders. Considering the mediocre effectiveness of antipsychotics, which are the main class of drug used to treat schizophrenia, we analyzed a cohort of 58 schizophrenia patients who had blood collected before and after 6 weeks of antipsychotic treatment using a shotgun mass spectrometry proteomic profiling approach. Our aim was to unravel molecular pathways involved with an effective drug response. The results showed that all patients had essentially the same biochemical pathways triggered Independent of the antipsychotic response outcome. However, we observed that these pathways were regulated in different directions in blood samples from those who responded well to antipsychotics, compared with those who had a poorer outcome. These data are novel, timely and may help to guide new research efforts in the design of new treatments or medications for schizophrenia based on biologically relevant pathways.