Search Results

Now showing 1 - 4 of 4
  • Item
    Ultrafast structural changes in SrTiO3 due to a superconducting phase transition in a YBa2Cu3O7 top layer
    (College Park, MD : Institute of Physics Publishing, 2010) Lübcke, A.; Zamponi, F.; Loetzsch, R.; Kämpfer, T.; Uschmann, I.; Große, V.; Schmidl, F.; Köttig, T.; Thürk, M.; Schwoerer, H.; Förster, E.; Seidel, P.; Sauerbrey, R.
    We investigate the structural response of SrTiO3 when Cooper pairs are broken in an epitaxially grown YBa2Cu3O 7 top layer due to both heating and optical excitation. The crystal structure is investigated by static, temperaturedependent and time-resolved x-ray diffraction. In the static case, a large strain field in SrTiO3 is formed in the proximity of the onset of the superconducting phase in the top layer, suggesting a relationship between both effects. For the time-dependent studies, we likewise find a large fraction of the probed volume of the SrTiO3 substrate strained if the top layer is superconducting. Upon optical breaking of Cooper pairs, the observed width of the rocking curve is reduced and its position is slightly shifted towards smaller angles. The dynamical theory of x-ray diffraction is used to model the measured rocking curves. We find that the thickness of the strained layer is reduced by about 200 nm on a sub-ps to ps timescale, but the strain value at the interface between SrTiO3 and YBa2Cu3O7 remains unaffected. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Ultrafast inter-ionic charge transfer of transition-metal complexes mapped by femtosecond x-ray powder diffraction
    (Les Ulis : EDP Sciences, 2013) Zamponi, F.; Freyer, B.; Juvé, V.; Stingl, J.; Woerner, M.; Chergui, M.; Elsaesser, T.
    Transient electron density maps are derived from x-ray diffraction patterns of photoexcited [Fe(bpy)3]2+(PF6 -)2 powder. Upon photoexcitation, the 5T 2 quintet state reveals a charge transfer from the PF 6- ions and from the Fe atoms to neighboring bpy units. The charge transfer from the Fe points to a partial and weak charge-transfer character of this state.
  • Item
    Femtosecond x-ray diffraction using the rotating crystal method
    (Les Ulis : EDP Sciences, 2013) Freyer, B.; Stingl, J.; Zamponi, F.; Woerner, M.; Elsaesser, T.
    We demonstrate the rotating-crystal method in femtosecond x-ray diffraction. Structural dynamics of a photoexcited bismuth crystal is mapped in a pump-probe scheme by measuring intensity changes of many Bragg reflections simultaneously.
  • Item
    Ultrafast charge relocation in an ionic crystal probed by femtosecond x-ray powder diffraction
    (Les Ulis : EDP Sciences, 2013) Woerner, M.; Zamponi, F.; Rothhardt, P.; Stingl, J.; Elsaesser, T.
    Transient electron density maps of potassium dihydrogen phosphate(KH 2PO4, KDP) are derived from femtosecond x-ray powder diffraction patterns. Upon photoexcitation, the low-frequency TO soft mode is elongated impulsively and modulates the electronic charge distribution on the length scale of interatomic distances, much larger than the vibrational amplitude of the nuclear motion. The results demonstrate a charge transfer from the volumes around the P-atoms to those containing the O - H·· ·O units and a quadrupolar distortion of the K+ charge distribution. This behavior reflects the interplay of nuclear motions and electric polarizations in the ionic crystal lattice.