Search Results

Now showing 1 - 10 of 11
  • Item
    The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls
    (Amsterdam [u.a.] : Elsevier, 2019) Sinnesael, Matthias; De Vleeschouwer, David; Zeeden, Christian; Batenburg, Sietske J.; Da Silva, Anne-Christine; de Winter, Niels J.; Dinarès-Turell, Jaume; Drury, Anna Joy; Gambacorta, Gabriele; Hilgen, Frederik J.; Hinnov, Linda A.; Hudson, Alexander J.L.; Kemp, David B.; Lantink, Margriet L.; Laurin, Jiří; Li, Mingsong; Liebrand, Diederik; Ma, Chao; Meyers, Stephen R.; Monkenbusch, Johannes; Montanari, Alessandro; Nohl, Theresa; Pälike, Heiko; Pas, Damien; Ruhl, Micha; Thibault, Nicolas; Vahlenkamp, Maximilian; Valero, Luis; Wouters, Sébastien; Wu, Huaichun; Claeys, Philippe
    Cyclostratigraphy is an important tool for understanding astronomical climate forcing and reading geological time in sedimentary sequences, provided that an imprint of insolation variations caused by Earth’s orbital eccentricity, obliquity and/or precession is preserved (Milankovitch forcing). Numerous stratigraphic and paleoclimate studies have applied cyclostratigraphy, but the robustness of the methodology and its dependence on the investigator have not been systematically evaluated. We developed the Cyclostratigraphy Intercomparison Project (CIP) to assess the robustness of cyclostratigraphic methods using an experimental design of three artificial cyclostratigraphic case studies with known input parameters. Each case study is designed to address specific challenges that are relevant to cyclostratigraphy. Case 1 represents an offshore research vessel environment, as only a drill-core photo and the approximate position of a late Miocene stage boundary are available for analysis. In Case 2, the Pleistocene proxy record displays clear nonlinear cyclical patterns and the interpretation is complicated by the presence of a hiatus. Case 3 represents a Late Devonian proxy record with a low signal-to-noise ratio with no specific theoretical astronomical solution available for this age. Each case was analyzed by a test group of 17-20 participants, with varying experience levels, methodological preferences and dedicated analysis time. During the CIP 2018 meeting in Brussels, Belgium, the ensuing analyses and discussion demonstrated that most participants did not arrive at a perfect solution, which may be partly explained by the limited amount of time spent on the exercises (∼4.5 hours per case). However, in all three cases, the median solution of all submitted analyses accurately approached the correct result and several participants obtained the exact correct answers. Interestingly, systematically better performances were obtained for cases that represented the data type and stratigraphic age that were closest to the individual participants’ experience. This experiment demonstrates that cyclostratigraphy is a powerful tool for deciphering time in sedimentary successions and, importantly, that it is a trainable skill. Finally, we emphasize the importance of an integrated stratigraphic approach and provide flexible guidelines on what good practices in cyclostratigraphy should include. Our case studies provide valuable insight into current common practices in cyclostratigraphy, their potential merits and pitfalls. Our work does not provide a quantitative measure of reliability and uncertainty of cyclostratigraphy, but rather constitutes a starting point for further discussions on how to move the maturing field of cyclostratigraphy forward.
  • Item
    A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Perić, Zoran M.; Marković, Slobodan B.; Sipos, György; Gavrilov, Milivoj B.; Thiel, Christine; Zeeden, Christian; Murray, Andrew S.
    In the Middle Danube Basin, Quaternary deposits are widely distributed in the Vojvodina region where they cover about 95% of the area. Major research during the last two decades has been focused on loess deposits in the Vojvodina region. During this period, loess in the Vojvodina region has become one of the most important Pleistocene European continental climatic and environmental records. Here we present the dating results of 15 samples taken from the Nosak loess-palaeosol sequence in northeastern Serbia in order to establish a chronology over the last three glacial–interglacial cycles. We use the pIRIR290 signal of the 4–11 μm polymineral grains. The calculated ages are within the error limits partially consistent with the proposed multi-millennial chronostratigraphy for Serbian loess. The average mass accumulation rate for the last three glacial–interglacial cycles is 265 g m−2 a−1, which is in agreement with the values of most sites in the Carpathian Basin. Our results indicate a highly variable deposition rate of loess, especially during the MIS 3 and MIS 6 stages, which is contrary to most studies conducted in Serbia where linear sedimentation rates were assumed. © 2020 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Kaboth-Bahr, Stefanie; Bahr, André; Zeeden, Christian; Yamoah, Kweku A.; Lone, Mahjoor Ahmad; Chuang, Chih-Kai; Löwemark, Ludvig; Wei, Kuo-Yen
    Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Niño-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.
  • Item
    Chronological Assessment of the Balta Alba Kurgan Loess-Paleosol Section (Romania) – A Comparative Study on Different Dating Methods for a Robust and Precise Age Model
    (Lausanne : Frontiers Media, 2021) Scheidt, Stephanie; Berg, Sonja; Hambach, Ulrich; Klasen, Nicole; Pötter, Stephan; Stolz, Alexander; Veres, Daniel; Zeeden, Christian; Brill, Dominik; Brückner, Helmut; Kusch, Stephanie; Laag, Christian; Lehmkuhl, Frank; Melles, Martin; Monnens, Florian; Oppermann, Lukas; Rethemeyer, Janet; Nett, Janina J.
    Loess-paleosol sequences (LPSs) are important terrestrial archives of paleoenvironmental and paleoclimatic information. One of the main obstacles for the investigation and interpretation of these archives is the uncertainty of their age-depth relationship. In this study, four different dating techniques were applied to the Late Pleistocene to Holocene LPS Balta Alba Kurgan (Romania) in order to achieve a robust chronology. Luminescence dating includes analysis of different grain-size fractions of both quartz and potassium feldspar and the best results are obtained using fine-grained quartz blue‐stimulated and polymineral post-infrared infrared-stimulated luminescence measurements. Radiocarbon (14C) dating is based on the analysis of bulk organic carbon (OC) and compound-specific radiocarbon analysis (CSRA). Bulk OC and leaf wax-derived n-alkane 14C ages provide reliable age constraints for the past c. 25–27 kyr. CSRA reveals post-depositional incorporation of roots and microbial OC into the LPS limiting the applicability of 14C dating in older parts of the sequence. Magnetic stratigraphy data reveal good correlation of magnetic susceptibility and the relative paleointensity of the Earth’s magnetic field with one another as well as reference records and regional data. In contrast, the application of paleomagnetic secular variation stratigraphy is limited by a lack of regional reference data. The identification of the Campanian Ignimbrite/Y-5 tephra layer in the outcrop provides an independent time marker against which results from the other dating methods have been tested. The most accurate age constraints from each method are used for two Bayesian age-depth modeling approaches. The systematic comparison of the individual results exemplifies the advantages and disadvantages of the respective methods. Taken as a whole, the two age-depth models agree very well, our study also demonstrates that the multi-method approach can improve the accuracy and precision of dating loess sequences.
  • Item
    Rock Magnetic Cyclostratigraphy of Permian Loess in Eastern Equatorial Pangea (Salagou Formation, South-Central France)
    (Lausanne : Frontiers Media, 2020) Pfeifer, Lily S.; Hinnov, Linda; Zeeden, Christian; Rolf, Christian; Laag, Christian; Soreghan, Gerilyn S.
    We present the findings from analysis and modeling of a stratigraphic series of magnetic susceptibility (MS) data measured with a portable MS meter from the Permian Salagou Formation loessite (south-central France). The results reveal discernible Milankovitch-scale paleoclimatic variability throughout the Salagou Formation, recording astronomically forced climate change in deep-time loessite of eastern equatorial Pangea. Optimal sedimentation rates are estimated to have ranged between 9.4 cm/kyr (lower Salagou Formation) and 13 cm/kyr (mid-upper Salagou Formation). A persistent 10-m-thick cyclicity is present that likely represents orbital eccentricity-scale (∼100 kyr) variability through the middle to late Cisuralian (ca. 285—275 Ma). Subordinate, higher frequency cycles with thicknesses of ∼3.3–3.5 and ∼1.8 m appear to represent obliquity and precession-scale variability. If the driver of magnetic enhancement is pedogenic, then the ∼10 m thick cyclicity that is consistent over ∼1000 m of section may represent the thickness of loessite–paleosol couplets in the Salagou Formation. Laboratory rock magnetic data show generally low magnetic enhancement compared to analogous Eurasian Quaternary loess deposits. This is related to the predominance of hematite (substantially weaker signal than magnetite or maghemite) in the Salagou Formation which may be explained by different conditions of formation (e.g., syn depositional processes, more arid, and/or oxidizing climate conditions) than in present Eurasia and/or post depositional oxidation of magnetite and maghemite. © Copyright © 2020 Pfeifer, Hinnov, Zeeden, Rolf, Laag and Soreghan.
  • Item
    Loess-Palaeosol Sequences in the Kashmir Valley, NW Himalayas: A Review
    (Lausanne : Frontiers Media, 2020) Dar, Reyaz A.; Zeeden, Christian
    Loess deposits and intercalated palaeosols are widespread in the Quaternary record, and these have been extensively used to gain insights into continental paleoclimatic and paleo-environmental conditions and changes. Especially over Eurasia, loess geoarchives play an important role for our understanding of past changes. Loess covers almost 500 km2 of the Kashmir Valley in north-western India, it occurs dominantly in plateau positions, but also on terraces and sometimes forms slope deposits with thicknesses ranging from several to more than 20 m. For the time being, however, the timing of the initiation of the loess accumulation, the provenance, the grain size composition and also the paleo-environment have not been studied systematically and yet only little quantitative data is available. Yet it is clear that deposition rates are at least comparable to European loess, and that the presence of multiple palaeosols intercalated in the loess can provide valuable information on the history of the region. The limited available data hinders regional and continental correlation, and tapping its value as archive of past environmental changes in this sensitive region with influence from Westerlies and the Indian Monsoon. However, several characteristic palaeosol patterns can be traced throughout the Kashmir valley, which provide stratigraphic information. Several studies investigate physical and chemical properties of the loess-paleosol sequences and conclude to its aeolian origin and recording of past climates. The intensity of soil formation phases is traced through various proxies in low resolution and yet without conclusive age control. Here we review the exiting literature, available data, and interpretations from loess-palaeosol sequences in the Kashmir Valley. These are placed in the context of our own observations and loess from the Indian subcontinent. © Copyright © 2020 Dar and Zeeden.
  • Item
    A Detailed Paleoclimate Proxy Record for the Middle Danube Basin Over the Last 430 kyr: A Rock Magnetic and Colorimetric Study of the Zemun Loess-Paleosol Sequence
    (Lausanne : Frontiers Media, 2021) Laag, Christian; Hambach, Ulrich; Zeeden, Christian; Lagroix, France; Guyodo, Yohan; Veres, Daniel; Jovanović, Mladjen; Marković, Slobodan B.
    Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N′-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [μe* = 5 × 10–4 cm2×(Vs)−1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [μh* = 0.9 × 10–4 cm2×(Vs)−1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.
  • Item
    The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin
    (Lausanne : Frontiers Media, 2021) Nett, Janina J.; Chu, Wei; Fischer, Peter; Hambach, Ulrich; Klasen, Nicole; Zeeden, Christian; Obreht, Igor; Obrocki, Lea; Pötter, Stephan; Gavrilov, Milivoj B.; Vött, Andreas; Mihailović, Dušan; Marković, Slobodan B.; Lehmkuhl, Frank
    The Carpathian Basin is a key region for understanding modern human expansion into western Eurasia during the Late Pleistocene because of numerous early hominid fossil find spots. However, the corresponding archeological record remains less understood due to a paucity of well dated, contextualized sites. To help rectify this, we excavated and sampled Crvenka-At (Serbia), one of the largest Upper Paleolithic sites in the region to obtain radiometric ages for the archeological artifacts and evaluate their depositional context and subsequent site formation processes. Our results confirm that this locality represents a multiple-occupation Aurignacian site that dates to 36.4 ± 2.8 ka based on modeling of luminescence ages. Electrical resistivity tomography measurements indicate that the site formed on a sandy-gravelly fill terrace covered by overbank deposits. Complex grain size distributions further suggest site formation in contrasting depositional environments typically occurring alongside fluvial channels, at lakeshores, in alluvial fan or delta settings. The site is thus the closest (ca. 50 km) known Aurignacian site to the earliest undisputed modern human remains in Europe at the Peştera cu oase and some intervals of the occupation may therefore have been contemporaneous with them. This suggests that modern humans, during their initial settlement of Europe, exploited a wider range of topographic and ecological settings than previously posited. Our findings indicate that lowland areas of the Carpathian Basin are an important part of understanding the early settlement patterns of modern humans in Europe.
  • Item
    Multi-method study of the Middle Pleistocene loess-palaeosol sequence of Köndringen, SW Germany
    (Göttingen : Copernicus, 2023) Schwahn, Lea; Schulze, Tabea; Fülling, Alexander; Zeeden, Christian; Preusser, Frank; Sprafke, Tobias
    Loess-palaeosol sequences (LPSs) remain poorly investigated in the southern part of the Upper Rhine Graben but represent an important element to understand the environmental context controlling sediment dynamics in the area. A multi-method approach applied to the LPS at Köndringen reveals that its formation occurred during several glacial-interglacial cycles. Field observations, as well as colour, grain size, magnetic susceptibility, organic carbon, and carbonate content measured in three profiles at 5 cm resolution, provide detailed stratigraphical information. Only minor parts of the LPS are made up of loess sediment, whereas the major parts are polygenetic palaeosols and pedosediments of varying development that are partly intersected, testifying to a complex local geomorphic evolution. The geochronological framework is based on 10 cm resolution infrared-stimulated luminescence (IRSL) screening combined with 18 multi-elevated-temperature post-IR IRSL ages. The luminescence ages indicate that two polygenetic, truncated Luvisols formed during marine isotope stages (MISs) 9(-7?) and MIS 5e, whereas unaltered loess units correspond to the last glacial (MISs 5d-2) and MIS 8. The channel-like structure containing the two truncated Luvisols cuts into > 2 m thick pedosediments apparently deposited during MIS 12. At the bottom of the LPS, a horizon with massive carbonate concretions (loess dolls) occurs, which may correspond to at least one older interglacial.
  • Item
    An astronomical age-depth model and reconstruction of moisture availability in the sediments of Lake Chalco, central Mexico, using borehole logging data
    (Oxford [u.a.] : Elsevier, 2022) Sardar Abadi, Mehrdad; Zeeden, Christian; Ulfers, Arne; Wonik, Thomas
    Understanding the moisture history of low latitudes from the most recent glacial period of the latest Pleistocene to post-glacial warmth in continental tropical regions is hampered by the lack of continuous time series. We conducted downhole spectral gamma (γ) ray and magnetic susceptibility logs over 300 m of lacustrine deposits of Lake Chalco (Mexico City) to reconstruct an age-depth model using an astronomical and correlative approach, and to reconstruct long-term moisture availability. Our results suggest that the Lake Chalco sediments contain several rhythmic alternations with a quasi-cyclic pattern comparable to the Pleistocene benthic stack. This allows us to calculate a time span of about 500,000 years for this sediment deposition. We developed proxies for moisture, detrital input, and salinity, all based on the physical properties of γ-ray spectroscopy and magnetic susceptibility. Our results indicate that Lake Chalco formed during Marine Isotope Stage 13 (MIS13) and the lake level gradually increased over time until the interglacial MIS9. Moisture content is generally higher during interglacials than during glacials. However, two periods, namely MIS6 and MIS4, have higher moisture contents. We developed a model by comparing the obtained moisture proxy with climatic drivers, to understand how different climate systems drove effective moisture availability in the Chalco sub-basin over the past 500,000 years. Carbon dioxide, eccentricity, and precession are all key drivers of the moisture content of Lake Chalco over the past 500,000 years.