Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin

2018, Siewert, F., Löchel, B., Buchheim, J., Eggenstein, F., Firsov, A., Gwalt, G., Kutz, O., Lemke, St., Nelles, B., Rudolph, I., Schäfers, F., Seliger, T., Senf, F., Sokolov, A., Waberski, Ch., Wolf, J., Zeschke, T., Zizak, I., Follath, R., Arnold, T., Frost, F., Pietag, F., Erko, A.

Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm−1 and 1200 lines mm−1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

Loading...
Thumbnail Image
Item

Linear chirped slope profile for spatial calibration in slope measuring deflectometry

2016, Siewert, F., Zeschke, T., Arnold, T., Paetzelt, H, Yashchuk, V.V.

Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.