Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment

2012, Liu, Zengqian, Li, Ran, Liu, Gang, Song, Kaikai, Pauly, Simon, Zhang, Tao, Eckert, Jürgen

Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.

Loading...
Thumbnail Image
Item

Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis

2020, Sahabudeen, Hafeesudeen, Qi, Haoyuan, Ballabio, Marco, Položij, Miroslav, Olthof, Selina, Shivhare, Rishi, Jing, Yu, Park, SangWook, Liu, Kejun, Zhang, Tao, Ma, Ji, Rellinghaus, Bernd, Mannsfeld, Stefan, Heine, Thomas, Bonn, Mischa, Cánovas, Enrique, Zheng, Zhikun, Kaiser, Ute, Dong, Renhao, Feng, Xinliang

Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100–150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V−1 s−1, superior to the previously reported polyimine based materials. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness

2016, Sahabudeen, Hafeesudeen, Qi, Haoyuan, Glatz, Bernhard Alexander, Tranca, Diana, Dong, Renhao, Hou, Yang, Zhang, Tao, Kuttner, Christian, Lehnert, Tibor, Seifert, Gotthard, Kaiser, Ute, Fery, Andreas, Zheng, Zhikun, Feng, Xinliang

One of the key challenges in two-dimensional (2D) materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here we show the successful preparation of porphyrin-containing monolayer and multilayer 2DPs through Schiff-base polycondensation reaction at an air-water and liquid-liquid interface, respectively. Both the monolayer and multilayer 2DPs have crystalline structures as indicated by selected area electron diffraction. The monolayer 2DP has a thickness of∼0.7 nm with a lateral size of 4-inch wafer, and it has a Young's modulus of 267±30 GPa. Notably, the monolayer 2DP functions as an active semiconducting layer in a thin film transistor, while the multilayer 2DP from cobalt-porphyrin monomer efficiently catalyses hydrogen generation from water. This work presents an advance in the synthesis of novel 2D materials for electronics and energy-related applications.

Loading...
Thumbnail Image
Item

Controllable sliding transfer of wafer‐size graphene

2016, Lu, Wenjing, Zeng, Mengqi, Li, Xuesong, Wang, Jiao, Tan, Lifang, Shao, Miaomiao, Han, Jiangli, Wang, Sheng, Yue, Shuanglin, Zhang, Tao, Hu, Xuebo, Mendes, Rafael G., Rümmeli, Mark H., Peng, Lianmao, Liu, Zhongfan, Fu, Lei

The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications.

Loading...
Thumbnail Image
Item

Polymerization driven monomer passage through monolayer chemical vapour deposition graphene

2018-10-3, Zhang, Tao, Liao, Zhongquan, Sandonas, Leonardo Medrano, Dianat, Arezoo, Liu, Xiaoling, Xiao, Peng, Amin, Ihsan, Gutierrez, Rafael, Chen, Tao, Zschech, Ehrenfried, Cuniberti, Gianaurelio, Jordan, Rainer

Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.

Loading...
Thumbnail Image
Item

Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device

2020, Park, SangWook, Liao, Zhongquan, Ibarlucea, Bergoi, Qi, Haoyuan, Lin, Hung-Hsuan, Becker, Daniel, Melidonie, Jason, Zhang, Tao, Sahabudeen, Hafeesudeen, Baraban, Larysa, Baek, Chang-Ki, Zheng, Zhikun, Zschech, Ehrenfried, Fery, Andreas, Heine, Thomas, Kaiser, Ute, Cuniberti, Gianaurelio, Dong, Renhao, Feng, Xinliang

Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 μm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 μm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning–erasing–forgetting memory process. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Thiophene-Bridged Donor–Acceptor sp2-Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction

2021, Xu, Shunqi, Sun, Hanjun, Addicoat, Matthew, Biswal, Bishnu P., He, Fan, Park, SangWook, Paasch, Silvia, Zhang, Tao, Sheng, Wenbo, Brunner, Eike, Hou, Yang, Richter, Marcus, Feng, Xinliang

Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor–acceptor-based 2D sp2-carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2′,3′-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2′-([2,2′-bithiophene]-5,5′-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H2-evolution photocurrent density up to ≈7.9 µA cm−2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm−2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Twinned growth behaviour of two-dimensional materials

2016, Zhang, Tao, Jiang, Bei, Xu, Zhen, Mendes, Rafael G., Xiao, Yao, Chen, Linfeng, Fang, Liwen, Gemming, Thomas, Chen, Shengli, Rümmeli, Mark H., Fu, Lei

Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures.