Search Results

Now showing 1 - 2 of 2
  • Item
    Network during light-induced cotyledons opening and greening in Astragalus membranaceus
    (London [u.a.] : Taylor & Francis Group, 2020) Yang, Nan; Zhang, Ye; Liu, Jia; Liu, Yang; Chen, Qi; Wang, Hongzheng; Guo, Xiaorui; Herppich, Werner B.; Tang, Zhonghua
    Opening and greening are main characteristics of morphogenesis of cotyledons. For revealing interrelationship between metabolism and morphogenesis, metabolic shifts were analyzed in cotyledon of A. membranaceus seedlings with different stages in light and in darkness. Light induced 69 metabolites (MA), related to cotyledon greening; additional 89 metabolites (MB), related to cotyledon opening, were identified by WGCNA. The screening of metabolites shared in both MA and MB obtained 37 specific metabolites (MC) related to both opening and greening. In this context, main changes in MC occurred during A3, the stage in which cotyledons fully opened and greened. Within MC, few sugars, including L-(-)-sorbose, mannose, glucose and its derivatives, markedly decreased, while other sugars, amino acids, and unsaturated fatty acids increased. Most isoflavones and flavonols including ononin, caycosin-7-glucosides, quercetin, genistein, and catechin increased 5.3, 5.5, 13.4, 6.4 and 1.8 times, respectively. Thus, accumulated flavonoids play an important role during this developmental stage. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging science
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Dong, Guozhi; Hintermüller, Michael; Zhang, Ye
    In this paper, we study damped second-order dynamics, which are quasilinear hyperbolic partial differential equations (PDEs). This is inspired by the recent development of second-order damping systems for accelerating energy decay of gradient flows. We concentrate on two equations: one is a damped second-order total variation flow, which is primarily motivated by the application of image denoising; the other is a damped second-order mean curvature flow for level sets of scalar functions, which is related to a non-convex variational model capable of correcting displacement errors in image data (e.g. dejittering). For the former equation, we prove the existence and uniqueness of the solution. For the latter, we draw a connection between the equation and some second-order geometric PDEs evolving the hypersurfaces which are described by level sets of scalar functions, and show the existence and uniqueness of the solution for a regularized version of the equation. The latter is used in our algorithmic development. A general algorithm for numerical discretization of the two nonlinear PDEs is proposed and analyzed. Its efficiency is demonstrated by various numerical examples, where simulations on the behavior of solutions of the new equations and comparisons with first-order flows are also documented.