Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Influence of aerosol copper on HO2 uptake: A novel parameterized equation

2020, Song, Huan, Chen, Xiaorui, Lu, Keding, Zou, Qi, Tan, Zhaofeng, Fuchs, Hendrik, Wiedensohler, Alfred, Moon, Daniel R., Heard, Dwayne E., Baeza-Romero, María-Teresa, Zheng, Mei, Wahner, Andreas, Kiendler-Scharr, Astrid, Zhang, Yuanhang

Heterogeneous uptake of hydroperoxyl radicals (HO2) onto aerosols has been proposed to be a significant sink of HOx , hence impacting the atmospheric oxidation capacity. Accurate calculation of the HO2 uptake coefficient HO2 is key to quantifying the potential impact of this atmospheric process. Laboratory studies show that HO2 can vary by orders of magnitude due to changes in aerosol properties, especially aerosol soluble copper (Cu) concentration and aerosol liquid water content (ALWC). In this study we present a state-of-the-art model called MARK to simulate both gas- and aerosol-phase chemistry for the uptake of HO2 onto Cu-doped aerosols. Moreover, a novel parameterization of HO2 uptake was developed that considers changes in relative humidity (RH) and condensed-phase Cu ion concentrations and which is based on a model optimization using previously published and new laboratory data included in this work. This new parameterization will be applicable to wet aerosols, and it will complement current IUPAC recommendations. The new parameterization is as follows (the explanations for symbols are in the Appendix): (Formula presented) All parameters used in the paper are summarized in Table A1. Using this new equation, field data from a field campaign were used to evaluate the impact of the HO2 uptake onto aerosols on the ROx (=OH+HO2 CRO2) budget. Highly variable values for HO2 uptake were obtained for the North China Plain (median value <0.1). © 2020 Copernicus GmbH. All rights reserved.

Loading...
Thumbnail Image
Item

Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China

2016, Tham, Yee Jun, Wang, Zhe, Li, Qinyi, Yun, Hui, Wang, Weihao, Wang, Xinfeng, Xue, Likun, Lu, Keding, Ma, Nan, Bohn, Birger, Li, Xin, Kecorius, Simonas, Größ, Johannes, Shao, Min, Wiedensohler, Alfred, Zhang, Yuanhang, Wang, Tao

Nitryl chloride (ClNO2) is a dominant source of chlorine radical in polluted environment, and can significantly affect the atmospheric oxidative chemistry. However, the abundance of ClNO2 and its exact role are not fully understood under different environmental conditions. During the summer of 2014, we deployed a chemical ionization mass spectrometer to measure ClNO2 and dinitrogen pentoxide (N2O5) at a rural site in the polluted North China Plain. Elevated mixing ratios of ClNO2 (> 350 pptv) were observed at most of the nights with low levels of N2O5 (< 200 pptv). The highest ClNO2 mixing ratio of 2070 pptv (1 min average) was observed in a plume from a megacity (Tianjin), and was characterized with a faster N2O5 heterogeneous loss rate and ClNO2 production rate compared to average conditions. The abundant ClNO2 concentration kept increasing even after sunrise, and reached a peak 4 h later. Such highly sustained ClNO2 peaks after sunrise are discrepant from the previously observed typical diurnal pattern. Meteorological and chemical analysis shows that the sustained ClNO2 morning peaks are caused by significant ClNO2 production in the residual layer at night followed by downward mixing after breakup of the nocturnal inversion layer in the morning. We estimated that  ∼  1.7–4.0 ppbv of ClNO2 would exist in the residual layer in order to maintain the observed morning ClNO2 peaks at the surface site. Observation-based box model analysis show that photolysis of ClNO2 produced chlorine radical with a rate up to 1.12 ppbv h−1, accounting for 10–30 % of primary ROx production in the morning hours. The perturbation in total radical production leads to an increase of integrated daytime net ozone production by 3 % (4.3 ppbv) on average, and with a larger increase of 13 % (11 ppbv) in megacity outflow that was characterized with higher ClNO2 and a relatively lower oxygenated hydrocarbon (OVOC) to non-methane hydrocarbon (NMHC) ratio.

Loading...
Thumbnail Image
Item

Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility

2020, Wang, Yu, Chen, Ying, Wu, Zhijun, Shang, Dongjie, Bian, Yuxuan, Du, Zhuofei, Schmitt, Sebastian H., Su, Rong, Gkatzelis, Georgios I., Schlag, Patrick, Hohaus, Thorsten, Voliotis, Aristeidis, Lu, Keding, Zeng, Limin, Zhao, Chunsheng, Alfarra, M. Rami, McFiggans, Gordon, Wiedensohler, Alfred, Kiendler-Scharr, Astrid, Zhang, Yuanhang, Hu, Min

As has been the case in North America and western Europe, the SO2 emissions have substantially reduced in the North China Plain (NCP) in recent years. Differential rates of reduction in SO2 and NOx concentrations result in the frequent occurrence of particulate matter pollution dominated by nitrate (pNO−3) over the NCP. In this study, we observed a polluted episode with the particulate nitrate mass fraction in nonrefractory PM1 (NR-PM1) being up to 44 % during wintertime in Beijing. Based on this typical pNO−3-dominated haze event, the linkage between aerosol water uptake and pNO−3 enhancement, further impacting on visibility degradation, has been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from ∼10 % to 70 %, the aerosol particle liquid water increased from ∼1 µg m−3 at the beginning to ∼75 µg m−3 in the fully developed haze period. The aerosol liquid water further increased the aerosol surface area and volume, enhancing the condensational loss of N2O5 over particles. From the beginning to the fully developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 when considering extra surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the thermodynamic equilibrium of HNO3 in the particle phase under the supersaturated HNO3 and NH3 in the atmosphere. All the above results demonstrated that pNO−3 is enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn facilitating the aerosol take-up of water due to the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within 1 d. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in the NCP.

Loading...
Thumbnail Image
Item

Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: Roles of aerosol water content and chemical composition

2018, Tham, Yee Jun, Wang, Zhe, Li, Qinyi, Wang, Weihao, Wang, Xinfeng, Lu, Keding, Ma, Nan, Yan, Chao, Kecorius, Simonas, Wiedensohler, Alfred, Zhang, Yuanhang, Wang, Tao

Heterogeneous uptake of dinitrogen pentoxide (N2O5) and production of nitryl chloride (ClNO2) are important nocturnal atmospheric processes that have significant implications for the production of secondary pollutants. However, the understanding of N2O5 uptake processes and ClNO2 production remains limited, especially in China. This study presents a field investigation of the N2O5 heterogeneous uptake coefficient (γ(N2O5)) and ClNO2 production yield (ϕ) in a polluted area of northern China during the summer of 2014. The N2O5 uptake coefficient and ClNO2 yield were estimated by using the simultaneously measured ClNO2 and total nitrate in 10 selected cases, which have concurrent increases in the ClNO2 and nitrate concentrations and relatively stable environmental conditions. The determined γ(N2O5) and ϕ values varied greatly, with an average of 0.022 for γ(N2O5) (±0.012, standard deviation) and 0.34 for ϕ (±0.28, standard deviation). The variations in γ(N2O5) could not be fully explained by the previously derived parameterizations of N2O5 uptake that consider nitrate, chloride, and the organic coating. Heterogeneous uptake of N2O5 was found to have a strong positive dependence on the relative humidity and aerosol water content. This result suggests that the heterogeneous uptake of N2O5 in Wangdu is governed mainly by the amount of water in the aerosol, and is strongly water limited, which is different from most of the field observations in the US and Europe. The ClNO2 yield estimated from the parameterization was also overestimated comparing to that derived from the observation. The observation-derived ϕ showed a decreasing trend with an increasing ratio of acetonitrile to carbon monoxide, an indicator of biomass burning emissions, which suggests a possible suppressive effect on the production yield of ClNO2 in the plumes influenced by biomass burning in this region. The findings of this study illustrate the need to improve our understanding and to parameterize the key factors for γ(N2O5) and ϕ to accurately assess photochemical and haze pollution.

Loading...
Thumbnail Image
Item

No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014

2020, Tan, Zhaofeng, Hofzumahaus, Andreas, Lu, Keding, Brown, Steven S., Holland, Frank, Huey, Lewis Gregory, Kiendler-Scharr, Astrid, Li, Xin, Liu, Xiaoxi, Ma, Nan, Min, Kyung-Eun, Rohrer, Franz, Shao, Min, Wahner, Andreas, Wang, Yuhang, Wiedensohler, Alfred, Wu, Yusheng, Wu, Zhijun, Zeng, Limin, Zhang, Yuanhang, Fuchs, Hendrik

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.