Search Results

Now showing 1 - 4 of 4
  • Item
    Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale
    (Weinheim : Wiley-VCH, 2020) Ta, Huy Quang; Bachmatiuk, Alicja; Mendes, Rafael Gregorio; Perello, David J.; Zhao, Liang; Trzebicka, Barbara; Gemming, Thomas; Rotkin, Slava V.; Rümmeli, Mark H.
    In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
    (Weinheim : Wiley-VCH, 2020) Zhao, Liang; Ta, Huy Q.; Mendes, Rafael G.; Bachmatiuk, Alicja; Rummeli, Mark H.
    Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single-atom-thick two-dimensional (2D) metals exist. This work shows single-atom-thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single-atom-thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications
    (Weinheim : Wiley-VCH, 2019) Ullah, Sami; Hasan, Maria; Ta, Huy Q.; Zhao, Liang; Shi, Qitao; Fu, Lei; Choi, Jinho; Yang, Ruizhi; Liu, Zhongfan; Rümmeli, Mark H.
    Graphene doping principally commenced to compensate for its inert nature and create an appropriate bandgap. Doping of 3D graphene has emerged as a topic of interest because of attempts to combine its large available surface area—arising from its interconnected porous architecture—with superior catalytic, structural, chemical, and biocompatible characteristics that can be induced by doping. In light of the latest developments, this review provides an overview of the scalable chemical vapor deposition (CVD)-based growth of doped 3D graphene materials as well as their applications in various contexts, such as in devices used for energy generation and gas storage and biosensors. In particular, single- and multielement doping of 3D graphene by various dopants (such as nitrogen (N), boron (B), sulfur (S) and phosphorous (P)), the doping configurations of the resultant materials, an overview of recent developments in the field of CVD, and the influence of various parameters of CVD on graphene doping and 3D morphologies are focused in this paper. Finally, this report concludes the discussion by mentioning the existing challenges and future opportunities of these developing graphitic materials, intending to inspire the unveiling of more exciting functionalized 3D graphene morphologies and their potential properties, which can hopefully realize many possible applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Correction: Direct chemical vapor deposition synthesis of large area single-layer brominated grapheme (RSC Advances (2019) 9 (13527-13532) DOI: 10.1039/C9RA01152H)
    (London : RSC Publishing, 2019) Hasan, Maria; Meiou, Wang; Yulian, Liu; Ullah, Sami; Ta, Huy Q.; Zhao, Liang; Mendes, Rafael G.; Malik, Zahida P.; Ahmad, Nasir M.; Liu, Zhongfan; R¨ummeli, Mark H.
    Correction for ‘Direct chemical vapor deposition synthesis of large area single-layer brominated graphene’ by Maria Hasan et al., RSC Adv., 2019, 9, 13527–13532. In the Acknowledgements section, the attribution “the Czech Republic from ERDF “Institute of Environmental Technology – Excellent Research” (No. CZ.02.1.01/0.0/0.0/15_019/0000853), should read “the Czech Republic from ERDF OP RDE project No. CZ.02.1.01/0.0/0.0/16_019/0000853”. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.