Search Results

Now showing 1 - 2 of 2
  • Item
    In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope
    (Basel : MDPI, 2018-5-26) Rummeli, Mark H.; Pan, Yumo; Zhao, Liang; Gao, Jing; Ta, Huy Q.; Martinez, Ignacio G.; Mendes, Rafael G.; Gemming, Thomas; Fu, Lei; Bachmatiuk, Alicja; Liu, Zhongfan
    The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.
  • Item
    In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
    (Weinheim : Wiley-VCH, 2020) Zhao, Liang; Ta, Huy Q.; Mendes, Rafael G.; Bachmatiuk, Alicja; Rummeli, Mark H.
    Bulk gold's attributes of relative chemical inertness, rarity, relatively low melting point and its beautiful sheen make it a prized material for humans. Recordings suggest it was the first metal employed by humans dating as far back to the late Paleolithic period ≈40 000 BC. However, at the nanoscale gold is expected to present new and exciting properties, not least in catalysis. Moreover, recent studies suggest a new family of single-atom-thick two-dimensional (2D) metals exist. This work shows single-atom-thick freestanding gold membranes and nanoribbons can form as suspended structures in graphene pores. Electron irradiation is shown to lead to changes to the graphene pores which lead to dynamic changes of the gold membranes which transition to a nanoribbon. The freestanding single-atom-thick 2D gold structures are relatively stable to electron irradiation for extended periods. The work should advance the development of 2D gold monolayers significantly. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim