Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

2016, Calder, S., Vale, J.G., Bogdanov, N.A., Liu, X., Donnerer, C., Upton, M.H., Casa, D., Said, A.H., Lumsden, M.D., Zhao, Z., Yan, J.-Q., Mandrus, D., Nishimoto, S., van den Brink, J., Hill, J.P., McMorrow, D.F., Christianson, A.D.

Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4þ), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5þ) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.

Loading...
Thumbnail Image
Item

Investigation of constitutive relationship and dynamic recrystallization behavior of 22MnB5 during hot deformation

2019, Xu, Y., Birnbaum, P., Pilz, S., Zhuang, X., Zhao, Z., Kräusel, V.

In order to analyze the softening behavior of 22MnB5 steel and further predict the constitutive relationship during hot sheet metal forming, a series of isothermal hot compression tests were conducted at the temperature range of 800–950 °C and strain rate range of 0.01–0.8 s−1 on BAEHR 805 A/D thermo-mechanical simulator system. Based on the friction corrected flow curves, the characteristic strain and stress of dynamic recrystallization (DRX) were derived from the Kocks-Mecking plots and expressed as a function of Zener-Hollomon parameter. Moreover, a physical constitutive model considering work hardening (WH), dynamic recovery (DRV) and DRX as well as corresponding JMAK-type DRX kinetics were developed. The results showed that the established physical equations can accurately predict the flow behavior with a correlation coefficient of 0.997 and average absolute relative error of 3.89%. Optical observation of the microstructure after hot compression revealed that the established DRX kinetics accurately reflects the reality, and then a Zener-Hollomon parameter dependent dynamic recrystallized grain size model was developed. Furthermore, EBSD analysis was carried out to study the effect of deformation conditions on martensite morphology and the results show that a lower temperature and higher strain rate lead to a finer martensite packet while the martensite block width becomes larger under the higher strain rate.