Search Results

Now showing 1 - 4 of 4
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; You, Yizhou; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Liu, Lijun; Wang, Dan; Choi, Jin-Ho; Sun, Jingyu; Yang, Ruizhi; Rummeli, Mark H.
    Sn4P3 binary alloy anode has attracted much attention, not only because of the synergistic effect of P and Sn, but also its universal popularity in alkali metal ion batteries (AIBs), including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs). However, the alkali metal ion (A+) storage and capacity attenuation mechanism of Sn4P3 anodes in AIBs are not well understood. Herein, a combination of ex situ X-ray diffraction, transmission electron microscopy, and density functional theory calculations reveals that the Sn4P3 anode undergoes segregation of Sn and P, followed by the intercalation of A+ in P and then in Sn. In addition, differential electrochemical curves and ex situ XPS results demonstrate that the deep insertion of A+ in P and Sn, especially in P, contributes to the reduction in capacity of AIBs. Serious sodium metal dendrite growth causes further reduction in the capacity of SIBs, while in PIBs it is the unstable solid electrolyte interphase and sluggish dynamics that lead to capacity decay. Not only the failure mechanism, including structural deterioration, unstable SEI, dendrite growth, and sluggish kinetics, but also the modification strategy and systematic analysis method provide theoretical guidance for the development of other alloy-based anode materials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Phosphorus‐Based Composites as Anode Materials for Advanced Alkali Metal Ion Batteries
    (Hoboke, NJ : Wiley, 2020) Zhou, Junhua; Shi, Qitao; Ullah, Sami; Yang, Xiaoqin; Bachmatiuk, Alicja; Yang, Ruizhi; Rummeli, Mark H.
    Alkaline metal ion batteries, such as lithium‐ion batteries have been increasingly adopted in consumer electronics, electric vehicles, and large power grids because of their high energy density, power density and working voltage, and long cycle life. Phosphorus‐based materials including phosphorus anodes and metal phosphides with high theoretical capacity, natural abundance, and environmental friendliness show great potential as negative electrodes for alkaline metal ion batteries. In this review, based on the understanding of the storage mechanism of alkali metal ions, the scientific challenges are discussed, the preparation methods and solutions to address these challenges are summarized, the application prospects are demonstrated, and finally possible future research directions of phosphorus‐based materials are provided.
  • Item
    Dual‐Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganese‐Rich Cathode Batteries
    (Weinheim : Wiley-VCH, 2021) Zhou, Junhua; Lian, Xueyu; Shi, Qitao; Liu, Yu; Yang, Xiaoqin; Bachmatiuk, Alicja; Liu, Lijun; Sun, Jingyu; Yang, Ruizhi; Choi, Jin-Ho; Rummeli, Mark H.
    Although lithium (Li) metal anode/lithium–manganese-rich (LMR) cathode batteries have an ultrahigh energy density, the highly active Li metal and structural deterioration of LMR can make the usage of these batteries difficult. Herein, a multifunctional electrolyte containing LiBF4 and LiFSI dual-salt additives is designed, which enables the superior cyclability of Li/LMR cells with capacity retentions of ≈83.4%, 80.4%, and 76.6% after 400 cycles at 0.5, 1, and 2 C, respectively. The dual-salt electrolyte can form a thin, uniform, and inorganic species-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). In addition, it alleviates the bulk Li corrosion and enhances the structural sustainability of LMR cathode. Moreover, the electrolyte design strategy provides insights to develop other high-voltage lithium metal batteries (HVLMBs) to enhance the cycle stability.