Search Results

Now showing 1 - 2 of 2
  • Item
    Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model
    (Washington, DC : ACS Publications, 2020) Hassan, Ghada; Forsman, Nina; Wan, Xing; Keurulainen, Leena; Bimbo, Luis M.; Stehl, Susanne; van Charante, Frits; Chrubasik, Michael; Prakash, Aruna S.; Johansson, Leena-Sisko; Mullen, Declan C.; Johnston, Blair F.; Zimmermann, Ralf; Werner, Carsten; Yli-Kauhaluoma, Jari; Coenye, Tom; Saris, Per E.J.; Österberg, Monika; Moreira, Vânia M.
    Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. © 2020 American Chemical Society.
  • Item
    Analysis of complex drugs by comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry: detailed chemical description of the active pharmaceutical ingredient sodium bituminosulfonate and its process intermediates
    (Heidelberg [u.a.] : Springer, 2022) Schwalb, Lukas; Tiemann, Ole; Käfer, Uwe; Gröger, Thomas; Rüger, Christopher Paul; Gayko, Guido; Zimmermann, Ralf
    The European pharmacopeia provides analytical methods for the chemical characterization of active pharmaceutical ingredients (APIs). However, the complexity of some APIs exceeds the limitations of the currently prevailing physicochemical methods. Sodium bituminosulfonate (SBS) is described by the collection of key parameters of generalizing criteria such as dry matter, sulfur and sodium content, and neutrality, but techniques to unravel the complexity on a molecular level are lacking. We present a study based on online derivatization with tetramethylammonium hydroxide in combination with comprehensive two-dimensional gas chromatography coupled to an electron ionization high-resolution time-of-flight mass spectrometer (GC × GC-HR-ToF–MS) for the chemical description of SBS as well as its process intermediates. The application of GC × GC allowed the comprehensive description of the chemical components in the API and the process intermediates for the first time. Furthermore, it was possible to classify peaks regarding their elemental and structural composition based on accurate mass information, elution behavior, and mass fragmentation pattern. This work demonstrates not only the general applicability, advantages but also limitations of GC × GC for the characterization of APIs for complex drugs. Graphical Abstract: [Figure not available: see fulltext.]