Search Results

Now showing 1 - 2 of 2
  • Item
    Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin
    (Chester : IUCr, 2018) Siewert, F.; Löchel, B.; Buchheim, J.; Eggenstein, F.; Firsov, A.; Gwalt, G.; Kutz, O.; Lemke, St.; Nelles, B.; Rudolph, I.; Schäfers, F.; Seliger, T.; Senf, F.; Sokolov, A.; Waberski, Ch.; Wolf, J.; Zeschke, T.; Zizak, I.; Follath, R.; Arnold, T.; Frost, F.; Pietag, F.; Erko, A.
    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm−1 and 1200 lines mm−1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.
  • Item
    Characterization of L21 order in Co2FeSi thin films on GaAs
    (Bristol : Institute of Physics Publishing, 2013) Jenichen, B.; Hentschel, T.; Herfort, J.; Kong, X.; Trampert, A.; Zizak, I.
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.