Search Results

Now showing 1 - 3 of 3
  • Item
    Enhanced Interfacial Shear Strength and Critical Energy Release Rate in Single Glass Fiber-Crosslinked Polypropylene Model Microcomposites
    (Basel : MDPI, 2018) Gohs, Uwe; Mueller, Michael Thomas; Zschech, Carsten; Zhandarov, Serge
    Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.
  • Item
    Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures
    (Basel : MDPI, 2019) Huang, Ying; Gohs, Uwe; Müller, Michael Thomas; Zschech, Carsten; Wießner, Sven
    In this work, natural rubber (NR) was masticated using an internal mixer to fit the requirements of reactive blending with polylactide and characterized by size exclusion chromatography (SEC), Fourier-transform infrared (FT-IR) spectroscopy and dynamic rheology measurements. Subsequently, the effect of elevated temperatures (25 °C, 80 °C, and 170 °C) on the electron beam (EB) induced crosslinking and degradation of masticated natural rubber (mNR) in a nitrogen atmosphere without adding crosslinking agents has been investigated. The sol gel investigation showed that the gel dose of mNR slightly increased with increasing irradiation temperature, which is also confirmed by the swelling test. The chain scission to crosslinking ratio (Gs/Gx) was found to be less than 1 for irradiated mNR at 25 °C and 80 °C, suggesting a dominating crosslinking behavior of mNR. However, a significant increase of Gs/Gx ratio (~1.12) was observed for mNR irradiated at 170 °C due to the enhanced thermal degradation behavior at high temperature. A remarkably improved elasticity (higher complex viscosity, higher storage modulus, and longer relaxation time) for EB modified mNR was demonstrated by dynamic rheological analysis. Particularly, the samples modified at higher temperatures represented more pronounced elasticity behavior which resulted from the higher number of branches and/or the longer branched chains.
  • Item
    A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide
    (Amsterdam [u.a.] : Elsevier Science, 2021) Huang, Ying; Müller, Michael Thomas; Boldt, Regine; Zschech, Carsten; Gohs, Uwe; Wießner, Sven
    Biodegradable polylactide/masticated natural rubber (PLA/mNR) blends were prepared by electron induced reactive processing (EIReP) without using any chemical additives. The PLA/mNR blends showed droplet-matrix morphology with decreased mNR particle size after EIReP treatment. The absolute value of complex viscosity and storage modulus increased significantly for the EIReP modified blends, suggesting the improved melt strength and elasticity. The crystallization investigation showed that the cold crystallization peak of PLA phase gradually disappeared after EIReP modification. Instead, the crystallization peak arose during melt cooling process. Consequently, the crystallinity of PLA phase increased from 6.2% to 39.0% as the mNR content increased from 0 to 20 wt%. It was found that the softening temperature of PLA examined by dynamic mechanical analysis increased effectively with the characters of higher modulus compared to the non-modified blends. The EIReP modified blends exhibited excellent mechanical properties with 7-fold increase of impact toughness compared with neat PLA, implying a superior interfacial adhesion and chain interactions between the two polymer phases. Furthermore, the thermogravimetric analysis demonstrated that the thermal stability was slightly enhanced for the EIReP modified blends.